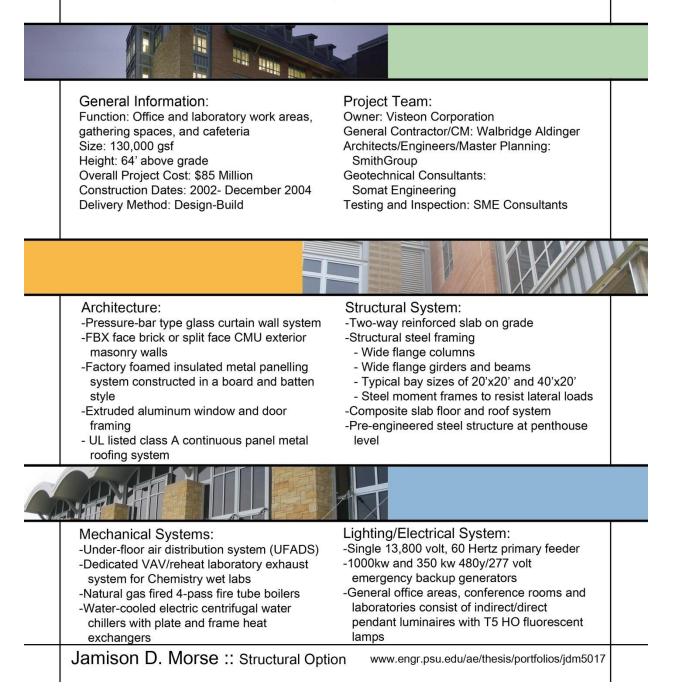
Visteon Village Corporate Center


Van Buren Township, MI

Thesis Final Report Jamison David Morse Structural Option Advisor: Dr. Andres Lepage

Visteon Corporate Village Center One Village Center Dr

Van Buren, MI 48111

Table of Contents

Abstract	1
Acknowledgements	3
Executive Summary	4
Introduction: Visteon Village Corporate Center	5
Site and General Architecture	6
Design Guides and Criteria	7
Existing Framing System	8
Thesis Overview	10
Thesis Depth Study: Seismically Detailed Lateral System and Connections	13
Thesis Breadth Study: Architecture	25
Thesis Breadth Study: Construction Process	31
Thesis Conclusion	33
Appendix	34
Gravity Framing – Original Column Grid	35
Gravity Framing – Modified Column Grid	42
Special Concentric Braced Frame Design	49
Special Concentric Braced Frame Connection Design	55
Torsion Analysis	70
Drift Analysis	75
Foundation Design	77
Sample BRBF vs SCBF Cost Analysis	81

Acknowledgments

The author would like to extend special thanks and recognition to the following individuals, faculty, and members of the professional community for their generous support and aid in the completion of this thesis:

SmithGroup

Star Seismic

Schuff Steel

Thornton Tomasetti

Nintendo of America

The Pennsylvania State University

The entire Architectural Engineering faculty and staff, particularly Prof M. Kevin Parfitt, Prof Robert Holland, and especially my advisor Dr Andres Lepage for all his help and guidance

My entire family for their continual support, especially my mother, father, sister and grandmother

A special thanks to all of my friends, particularly my roommates Stephen Lumpp and David Sivin for enduring the process with me and keeping me sane

Executive Summary

This thesis evaluates the feasibility of constructing the Visteon Village Corporate Center in the suburban area of Orinda, California outside of San Francisco, rather than its current location outside of metro Detroit in Van Buren, Michigan. Due to the much higher seismic activity in the west coast area, the location change calls for a redesign of the structural system with special attention to the lateral force resisting system. The depth of this thesis centers around integrating a seismically sufficient structural system into the building that will adequately handle the design loading scenarios, with a focus on the seismically detailed connections. The breadth studies will cover the architectural changes that the project will incur upon installation of the new system, and the changes to the fabrication schedule and cost of the construction process based upon the system selection.

The current lateral load resisting system of the Visteon Village Corporate Center is composed of special steel moment frames with spans up to 40 feet. These frames utilize large steel sections and expensive connections to resist the critical design wind loading of the Detroit area. The critical load case in Orinda, California is due to seismic forces which were calculated to be much larger than the wind loads the frames were designed for making the current system inadequate and thus in need of a redesign. Due to efficiency and economy, the column grid was changed to provide shorter spans, and a buckling restrained braced frame (BRBF) system was integrated into the building. While the bracing elements themselves were more expensive, this was offset by the cheaper connections, quicker fabrication and erection times, and potential to minimize damage in the event of an earthquake.

The architecture breadth focuses on providing a functional plan layout when the BRBF system is integrated into the building. The change to the column grid the restriction of the clear spans in the braced bays needed to be addressed to ensure the flow of building would not suffer. This study shows that with minimal architectural change a feasible layout can be achieved. The construction process breadth study looks at the fabrication and costs associated with different framing types and connections. Since the project is design-build, the fabrication schedule of the structural elements can cause a huge impact on the construction process as adequate lead time has to be provided between the completion of the construction documents and the planned date of steel erection.

As a whole, this thesis aims to create the most efficient structural system to handle the critical loading, while minimizing the cost associated with the project. This report shows that the proposed system has met these goals, and is a feasible design if the project was ever constructed in an area with high seismic activity.

Introduction: Visteon Corporate Village Center

The Visteon Corporate Village Center is located in the Detroit metro area of Van Burin, MI. The facility is one of many office and laboratory buildings present on the corporate campus of the global automotive supplier. The campus is laid out and styled to provide a village type of atmosphere, complete with sidewalks and streetlights. All master planning, architecture and engineering of the campus and its various buildings was completed by the Detroit office of the SmithGroup.

The Visteon Corporate Village Center is five stories high, with the fifth story penthouse reaching a height of 72'-9" above grade, and has an overall size of 130,000 gross square feet. The building is a steel framed structure consisting of a composite steel decking system resisting gravity loading and a special steel moment frame system for lateral support. The majority of the building consists of 40'-0" x 20'-0" bays providing a large amount of floor area that is uninterrupted by column placement. Included in the Village Center building is a large cafeteria space and multiple public presentation spaces as well as a large amount of office areas on the upper floors.

Site and General Architecture

The Visteon Village Corporate Campus is currently located on a man-made lake in Van Buren, Michigan. The building being analyzed in this thesis is the Visteon Village Corporate Center, the center building of the complex. As previously mentioned, the buildings are laid out in a village format, with lit walkways and greenery in between.

Design Guides and Criteria

During the analysis of the lateral system used by the Visteon Corporate Village Center, the following design aids were used:

The 2006 International Building Code (IBC 2006)

Building Code Requirements for Structural Concrete 2008, American Concrete Institute (ACI 318-08)

Steel Construction Manual, 13th Edition, American Institute of Steel Construction (AISC)

Minimum Design Loads for Buildings and Other Structures 2005, American Society of Civil Engineers (ASCE 7-05)

Drift Criteria per the 2006 International Building Code

D_{seismic} = 0.25h_{sx} (Allowable Story Drift)

The load cases used during this analysis were taken from section 1605 of the 2006 International Building Code. They included:

1.4D 1.2D + 1.6L + 0.5Lr 1.2D + 1.6Lr + (1.0L or 0.8W) 1.2D + 1.6W + 1.0L + 0.5Lr 1.2D + 1.0E +1.0L 0.9D + 1.6W 0.9D + 1.0E

These combinations were analyzed in different directions and applied to various eccentricities during the computer analysis. There were 122 LRFD load combinations that were generated and analyzed. Due to time constraints and simplicity, snow loading was not included in this analysis.

	Dead	Live
Roof	30 psf	30 psf
Fifth/PH	94 psf	150 psf
Fourth	92 psf	100 psf
Third	92 psf	100 psf
Second	92 psf	100 psf
First	92 psf	100 psf

Existing Framing System

Foundation:

All of the foundation systems for the Visteon Village Corporate Center were designed based upon the findings of a geotechnical investigation performed by Somat Engineering on October 14, 2002. There is a deep foundation system to support all building columns, walls, grade beams and other foundation elements. The deep foundation elements are comprised of friction steel H-piles in native medium compact to compact sand. All H-piles consist of 75 foot long HP12x84 sections with concrete pile caps and are of ASTM A992 steel (Fy = 50 ksi). The number of piles for each foundation element range from 1 to 7 providing capacities of 100 kips to 1050 kips respectively. The concrete pile caps are of reinforced concrete construction with their top elevation at a minimum depth of 3'-6" below finished grade as to prevent frost heave. The dimensions of the caps range from 3'x3' for a single H-pile element up to 13'x11'-8" for a 7 H-pile element. All concrete used in the foundation systems has a minimum compressive strength of 3000 psi.

Columns:

All of the columns of the building are composed of structural steel. The main column system is made up of ASTM A992 wide flange shapes ranging in size from W14x43 to W14x311. Typically, these columns rest upon the deep foundation system and extend 72 feet to the penthouse level with a column splice at an elevation of 52 feet (falling within the third story). These multistory columns are also part of the special moment frame system that resists lateral loading.

Floor and Roof Framing System:

The typical framing system for the Visteon Village Corporate Center is composed of structural steel composite beams and girders. The supported floor consists of 40 foot long ASTM A992 wide flange shapes spanning a column free space. The typical bay for each floor is 40'x20' with wide flange beams spaced at 10' on center supporting 3" composite metal floor deck with 3-1/4" light weight concrete fill providing a total slab depth of 6-1/4".

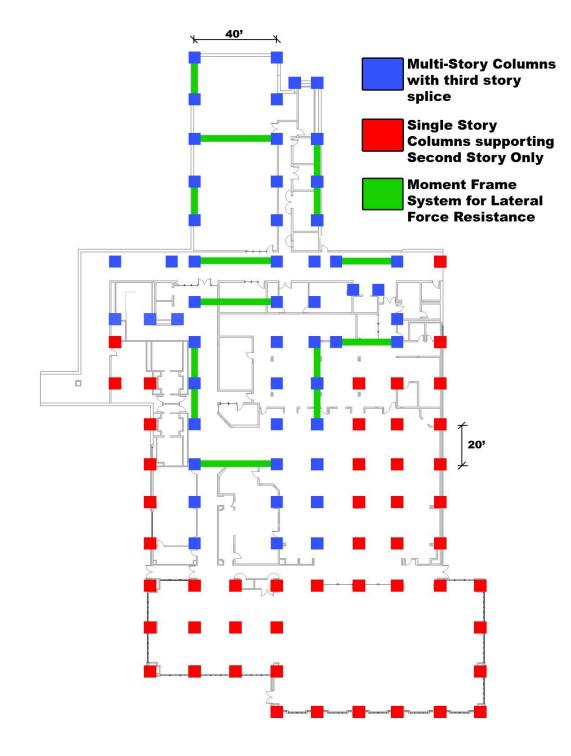


Figure 1 – Layout of Existing Structural System

Lateral System:

All lateral loads caused by wind and seismic forces are resisted by special steel moment frames. There are five moment frames running in the North/South direction of analysis and six moment frames running in the East/West direction of analysis. Each moment frame consists of multistory wide flange columns and wide flange beams. The columns are spliced at the third story, with the top three stories consisting of a W14x211 section being supported by a W14x311 extending through the lower two stories.

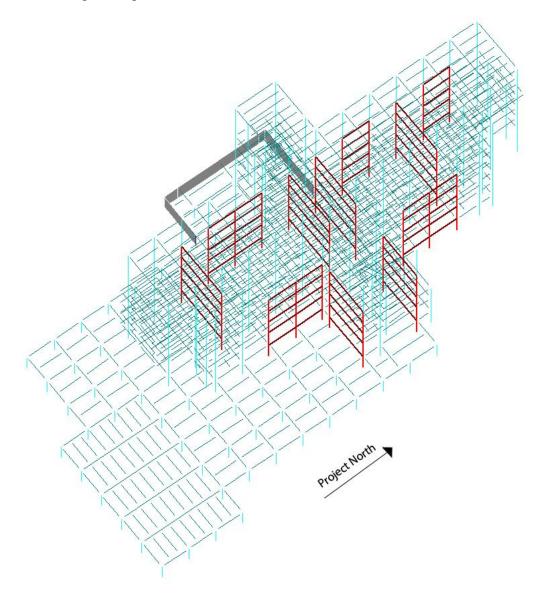


Figure 2 – Locations of Existing Special Moment Frames

Thesis Overview

Problem Statement

The current design of the Visteon Village Corporate Center's lateral load resisting system is comprised of special steel moment frames. While it is important to note that during the third technical report this system was deemed adequate, the additional lateral loading due to the relocation to a high seismic region makes the system not only inefficient but very uneconomical. The new loading caused extremely large story drifts, some of which were not allowable by code and the connections and steel sections that were necessary to ensure proper transfer and handling of the large moments and forces were extremely expensive in terms of both materials and fabrication. With these topics in mind, there was a need for a new lateral framing system that would optimize performance using economical steel sections and construction techniques, while maximizing the capacity of the lateral load resistance of the structure. This system must also be feasibly integrated into the architecture of the building to ensure the layout still has its intended functionality.

Problem Solution

The issues of economical design and drift optimization were the main areas that needed to be addressed. This lead to the notion of a complete redesign of the lateral load resisting system of the Visteon Village Corporate Center using braced frame systems. Multiple concentric and eccentric braced framing schemes were assessed for their feasibility of application to the project. Using a braced framing system to handle the lateral loading provided a substantially more efficient way to keep story drifts under control, specifically on a floor by floor basis. These connections also required significantly less field welding, which will save on labor and material costs during the construction phase. The design of proper connections was looked at closely as part of the depth of this thesis. The advantages and disadvantages the framing changes have on the current construction process were thoroughly investigated as a breadth study of this thesis. By changing the current moment frame system to braced frames, the open layout of the floor plan was slightly compromised as the frames interfered with the previously open spans. Movement of the frames to accommodate the architectural flow of the building was performed and assessed structurally, and a redesign of the floor plan layout to accommodate the framing system was

performed. These studies encompass an architectural breadth to ensure unity between the structural and functional design. Once all analyses of the proposed and current systems were completed, a comparison was performed to determine the system's feasibility, cost, and efficiency.

Breadth Studies

In addition to the main structural redesign of the lateral framing system of the Visteon Village Corporate Center, two breadth studies were performed. The first study analyzes the effects that the framing changes have on the construction process. The second study focuses on the architectural accommodations that will be required to integrate the new framing system into the building.

The construction study focuses on the benefits and drawbacks the different types of framing systems provide to the construction process in comparison with the existing moment frame system as well as with each other. This study covers the topics of cost, installation, estimating, and scheduling issues. As this project is of design-build nature, the fabrication stages of the connections were looked at extensively as this period of time provides the greatest impact on the construction process.

The architecture study focuses on the design issues caused by the implementation of the new braced frame system. Keeping the lateral resisting frames in their current locations would mean that multiple spans along the column grid which are currently open would have some sort of bracing interfering with the layout in the new design. A redesign of the floor plan was in order to show that a feasible and functional change of the architectural layout can be achieved. Another area of this study was changing the locations of the lateral resisting members to optimize the functionality and convenience of the architectural plan, which required additional structural analysis.

Thesis Depth Study: Seismically Detailed Lateral System and Connections

The main concentration of this thesis revolves around the complete redesign of the lateral load resisting system. As discussed in the previous technical reports, the existing system is comprised of eleven special steel moment frames: six in the east-west direction and five in the north-south direction. This framing method was selected for the original design because of the versatility it provided for the architectural layout with its large uninterrupted column to column spaces. Four of the six frames in the East-West orientation spanned a length of forty feet, minimizing restrictions of the architectural flow of the building. As investigated in the third technical report of this thesis, the framing system called for very large steel sections and expensive connections, but adequately handled the lateral forces applied by the critical wind loading scenario.

When the project was relocated to Orinda, California, a suburb of San Francisco, the loading and framing system had to be reanalyzed to ensure its adequacy in handling the new critical loading. According to ASCE 7-05, the basic wind speed for this area to be used in wind load calculation was V=85 mph. As the current system was designed for V=90 mph, the code value for Van Buren, Michigan, it could be easily seen that the existing special moment frame system would be able to handle the critical wind loading of Orinda, California. The dramatic changes in loading occurred when the seismic case was analyzed, as the selected site in California is a region with high seismic activity.

The area code of 94563 for Orinda, CA was plugged into the USGS provided "Seismic Hazard Curves and Uniform Hazardous Response Spectra" program to obtain S_s and S_1 values. A seismic analysis was then performed using criteria from Chapter 12 of ASCE 7-05. The results of this analysis are included in the appendix of this report. As the new critical lateral seismic load case was nearly eight times larger than the critical wind loading of the original Van Buren location, it was easily proven that the current system was inadequate to handle the loading and a redesign was in order.

The first step in this process was to assess whether the current system could be modified in an efficient and economical way to resist the critical seismic loading. Several iterations were performed using RAM Frame and SAP2000 software to determine the steel frame sections required. The resulting system used incredibly large and highly economical steel members, which still could not satisfy the seismic drift criteria set forth by ASCE 7-05. It was concluded that to provide the most efficient and economical lateral system, the layout had to be modified.

Under the loading conditions, the column spacing of forty feet along the northsouth length of the building (see Fig. 1) was looked into as a potential area to be modified. Special steel moment frames spanning that length were previously deemed extremely difficult and uneconomical, and the geometry made it difficult for braced frames to work efficiently as well. Concentric braced framing would cause the brace element to resist much larger than 70% of the total horizontal force, which made unable to meet the requirements of Seismic Provisions Section 13.2c as set forth by the AISC Seismic Design Manual. Eccentric braced frames were analyzed next, but required very large steel sections to accommodate the large span and were also deemed inefficient and uneconomical. At this point the decision was made to modify the column grid of the building along the north-south axis, providing more manageable spans to integrate the lateral bracing system.

The long axis (north-south) of the building is comprised of three column gridlines spaced forty feet and twenty feet apart respectively. The center gridline of the three was moved ten feet to the west, providing two equal spans of thirty feet each. Due to the shift of the column grid the gravity framing had to be assessed and redesigned. Due to the symmetry that the new layout provided along the north-south axis and the fact that the loading was uniform across both bays, the gravity framing was identical for both bays. This provided a potentially more efficient and economical gravity load resisting system than the previous design as the repetitive nature could reduce erection times and lower fabrication costs. The existing gravity framing designs as well as the modified gravity framing designs can be found in the appendix of this report.

Many lateral framing systems were debated upon for integration into the Visteon Village Corporate Center and preliminary analyses were performed. The large story forces from the critical seismic load case made story drifts a problematic issue. It was quickly seen that even with the reduced span of thirty feet, a moment frame system would not be an efficient choice. To satisfy the drift criteria as set forth by ASCE 7-05, the steel sections used for the framing had to be very large, or a large number of moment frames had to be used. While increasing the number of moment frames made the required steel sections smaller, this also increased the number of connections required which effectively cancelled out any cost savings of the lesser sections. The moment connections required multiple doubler plates at the panel zones making them an expensive option. These trial analyses lead to the conclusion that using some form of braced framing would be the best option to satisfy all criteria of the lateral framing system.

Upon deciding which form of bracing to use special concentrically braced frames (SCBFs) and eccentrically braced frames (EBFs) were compared. While EBFs provided more leeway for architectural design, they are not as efficient as a SCBF system for a few reasons. The symmetry of concentrically braced frames provided a more efficient system as identical members and connections were used for both sides of the frame. Also, the geometry of the bracing provided the most efficient load transfer to the braces, and minimized any extra loading the beam members had to endure due to the lateral forces. For these reasons, it was

initially decided that SCBFs were to be used for the new design of the lateral load resisting system.

Since the new system was to be designed with a modified column grid and braced frames, the feasibility of integration without compromising the architecture had to be assessed. This topic is covered extensively in the architecture breadth study section of this report. The study was completed concurrently with the preliminary SCBF system design to ensure that the design would work with the project prior to further analysis being performed. As shown in the study, the SCBF system can be successfully integrated in the building while maintaining architectural functionality, as long as the flow restrictions caused by the bracing was minimized. For this reason the system was designed with three frames oriented in the east-west direction, and four frames in the north-south direction. The frames were all positioned to maximize their efficiency while minimizing required architectural changes. The layout of the new framing system can be seen below (Fig. 3).

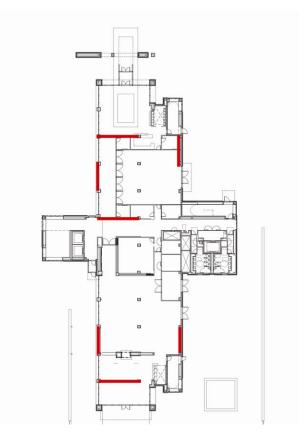


Figure 3 – Locations of Braced Frames

Once the layout of the framing system was established, the designing of the framing elements began. First, the critical seismic load case was established, and the base shear was calculated using an R=6 (SCBF) as dictated by ASCE 7-05. A summary of the story forces can be seen in (Fig. 4) below, and a summary of how the story forces were determined can be found in the appendix.

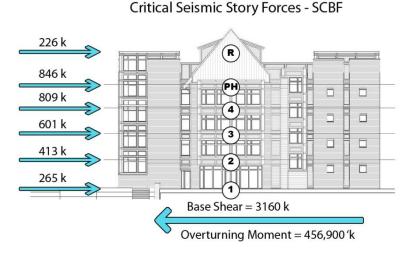
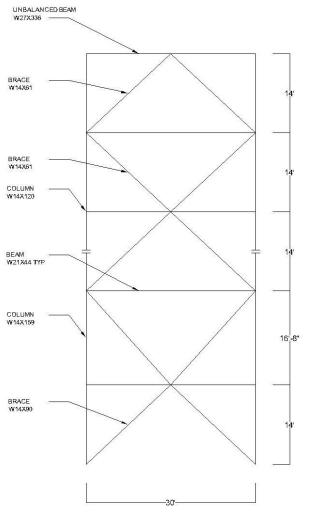
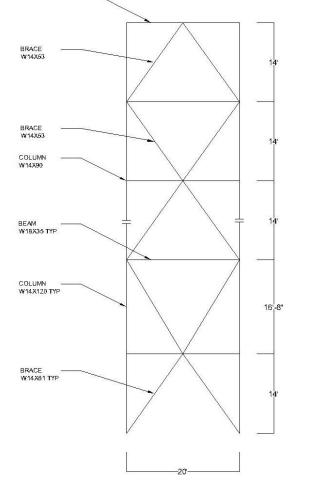
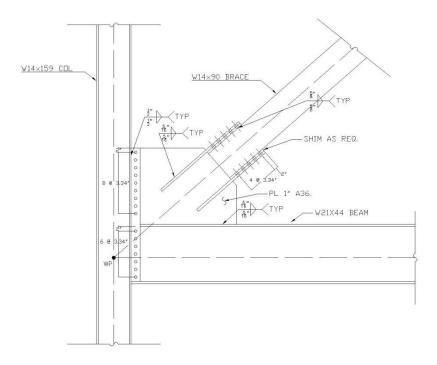



Figure 5 – SCBF Story Forces

A two story cross-bracing scheme was chosen to minimize the uneven loading on the beams by transferring all horizontal forces into the braces. Since the lateral framing system is not an even number of stories tall at five, the top brace was modeled as a chevron brace and the beam was designed to handle the uneven loading. All of the supporting calculations for member selection can be found in the appendix. The bracing scheme and the steel members that were selected can be seen in the image on the following page (Fig. 5).

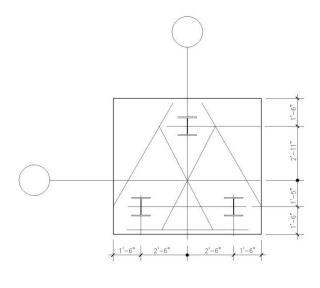
16 of 82


UNBALANCED BEAM W24X250


E-W FRAME ORIENTATION

N-S FRAME ORIENTATION

Figure 5 – SCBF Design

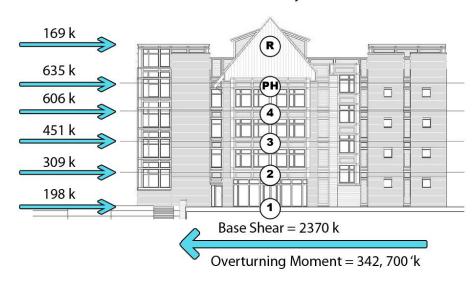


Once the SCBF framing and bracing was determined, a seismically detailed connection design was undertaken as specified by the AISC Seismic Design Manual to ensure that the SCBF connection could adequately handle the loading while maintaining R=6. All of the supporting calculations for the connection can be found in the appendix of this report. A detail of the final connection design can be seen below (Fig. 6).

Figure 6 - SCBF Connection Design

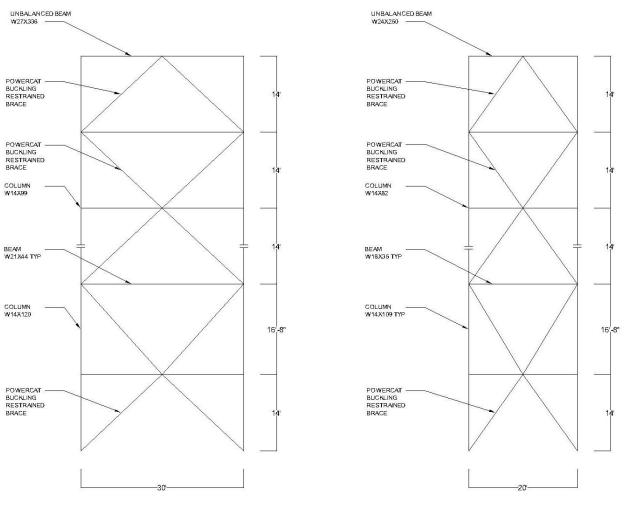
The foundation system of the Visteon Village Corporate Center also had to be reassessed to ensure its adequacy in handling the loads caused by the overturning moment from the heavy seismic loading. Looking at soil property maps provided by the United States Geological Survey it was determined that large deposits of limestone were prevalent in the building's new region. Using this information, a deep foundation system was designed using HP12x84 steel piles and concrete pile caps. The calculations for this system can be found in the appendix, and the detail can be seen on the following page. (Fig. 7)

5 TYP 3 H PILES - TYPE 3A SCALE: NTS


Figure 7 – Foundation Design

A direct shear, torsional shear, and drift analysis was performed on the bracing scheme using Microsoft Excel and SAP2000 software. The results show that the system was adequate in all of these categories, and the summary of these tests can be viewed in the appendix of this report. Now that an efficient and economical lateral system had been initially established and designed, similar systems were researched to see if any improvements in performance and costs could be obtained. The product of this research showed that this building could benefit by using a buckling restrained braced frame (BRBF) system in lieu of the designed SCBF system in place in both performance and economy.

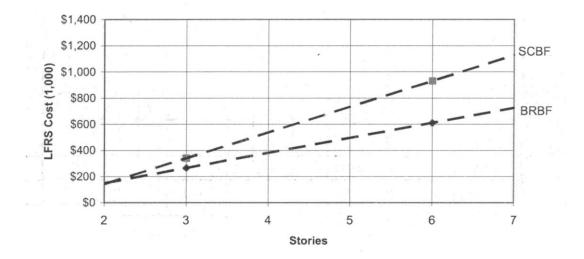
The unique characteristic of a BRBF system is that the bracing elements yield inelastically in both compression and tension. This is accomplished by encasing the steel core within the bracing element, in turn creating a limit of the core's buckling. Axial loads are handled by the steel core while the casing acts as a buckling restraining mechanism by resisting overall brace buckling and restraining high-mode steel core buckling or rippling. There are a few manufacturers that produce these systems, but the PowerCat design by Star Seismic was chosen for use in this thesis.


Using this system, the braces were configured in the same way as the previously designed SCBF system. The base shear of the critical load case was decreased by using this system, as ASCE 7-05 provides that an R=8 can be used which increased from the previous system's R=6 value. While the special bracing

members are definitely more expensive than a standard wide-flange shape that the SCBF design required, the savings in materials in both the columns and connections more than make up for the bracing expense. The total amount of steel used by this system decreased by about eighteen tons when compared to a SCBF system, equating to a cost savings of roughly \$65,000. The following figures show the story forces and brace designs using a BRBF system. (Fig 8 and 9)

Critical Seismic Story Forces - BRBF

Figure 8 – BRBF Story Forces



E-W FRAME ORIENTATION

N-S FRAME ORIENTATION

Figure 9 – BRBF Design

An independent study on BRBF systems was performed by Dasse Design Inc, now a part of Thornton Tomasetti, on March 7, 2007. This study encompassed a cost comparison between a SCBF system and a BRBF system. This study concludes that in areas of high seismic activity, BRBFs become a significantly more economical choice in buildings of three stories or higher, providing greater savings as the number of floors increases. Dasse Design Inc provided a graph to illustrating the general relationship between the number of stories a building has and the total cost of the lateral force resisting system which can be seen on the following page. (Fig. 10)

Noted in the study is the substantial savings on seismically detailed connections the BRBF system provides over an R=6 bolted connection that was detailed previously. Specifically looking at the PowerCat series of braced frames by Seismic Star, the connection consists of gusset plates of standard orthogonal shapes. No stiffeners are required for this system as they have a patented design that builds the stability of the brace into the brace itself. The braces are connected by one specially designed pin at each end which saves time in the erection process. The amount of welding in the connection is much smaller than a typical SCBF connection and only simple fillet welds are necessary. Standard details of the PowerCat's connections as provided by Seismic Star can be seen below. (Fig. 11 and 12)

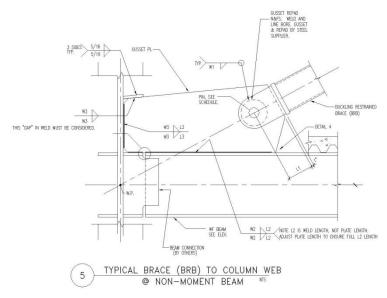


Figure 11 – PowerCat Brace to Column Web Detail

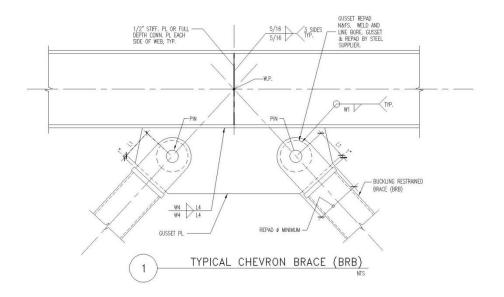


Figure 12 – PowerCat Brace to Beam Detail

Another advantage to using the PowerCat BRBF system is the savings that can be had after the occurrence of an earthquake. The seismic energy is almost completely dissipated in the braces themselves causing the beams and columns not to deform. This can minimize the overall damage of the building as beams and columns can be very expensive and tedious to replace. This property of BRBFs could also potentially minimize the damage done to non-structural elements of the building such as mechanical systems, partitions, and walls. The PowerCat's unique pin connection design also allows for the braces to be removed, analyzed, and replaced if necessary. This process is much less difficult than replacing the beams and columns, and essentially having to retrofit an entirely new lateral system after a seismic event.

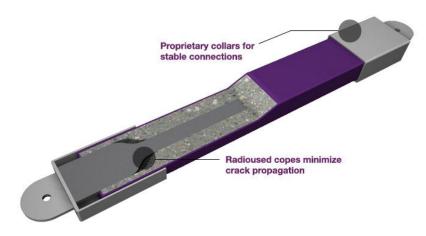


Figure 13 – PowerCat Brace

Depth Study Conclusion

It was determined that the Visteon Village Corporate Center's lateral force resisting system should be composed of a series of buckling restrained concentrically braced frames. The process involved optimizing the column grid placement and the preliminary analyses of a variety of different systems. The BRBF system provides substantial performance under the determined critical seismic loading case in Orinda, California. This scheme also provides savings at both the fabrication and erection stages of the construction process, as well as potential savings post installation in the event that a damaging earthquake was to occur. Overall, it is believed that this is the best system to be used for the Visteon Village Corporate Center as it satisfies all of the criteria posed by the project relocation as efficiently and economically as possible.

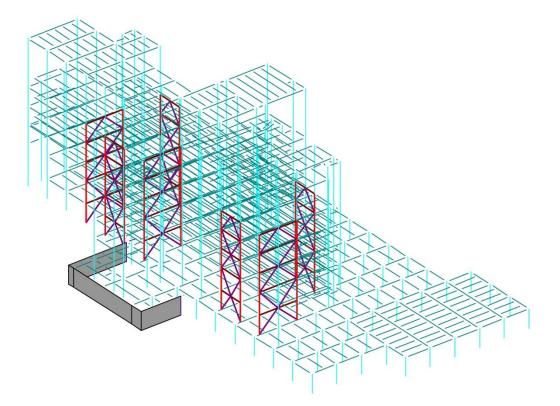


Figure 14 – Locations of BRBF System

Architecture Breadth Study

The existing structural system of the Visteon Village Corporate Center allows for a very open architectural floor plan. This is accomplished by the wide forty foot column grid spacing along the north-south axis of the building and the fact that the large bays are not interrupted by bracing as a special moment frame system was used to handle all of the lateral loading. In the depth study area of this report, it was deemed necessary to adjust the column grid spacing from forty feet down to thirty feet to allow a more efficient lateral system to be designed. Obviously, this change would have an impact on the architectural layout of the building, and had to be assessed to ensure the plan's functionality was not compromised. Once the most efficient lateral bracing system was decided to be concentrically braced frames, it also had to be proven that this system could successfully be integrated into the building without disrupting the architectural flow. The minimal design changes that were necessary are shown and explained below.

Here the configuration of the buckling restrained braced frame system is shown in the E-W direction. As the braces are restrictive in comparison to a moment frame system, it had to be assessed whether large enough openings could be achieved through the braced areas to satisfy IBC 2006. The smaller opening shown is 6' wide by 8' tall. This is the rough opening dimension for the double egress doors that are already being used as standard on this project. The large opening under the chevron braced floors is 12' wide by 8' tall, and can be used as a wide passageway where applicable.

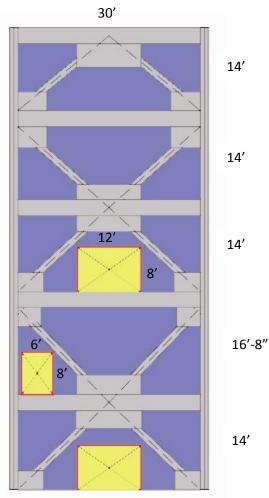
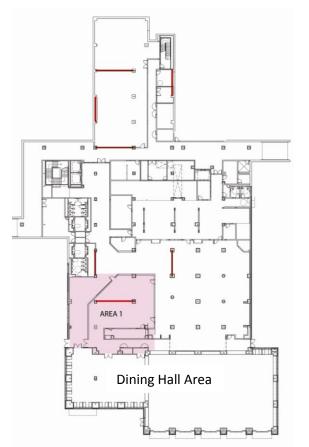
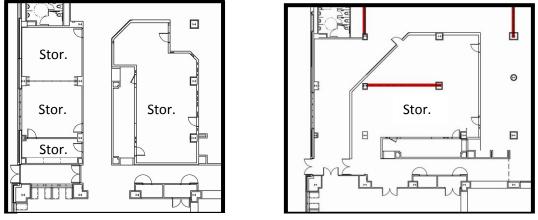
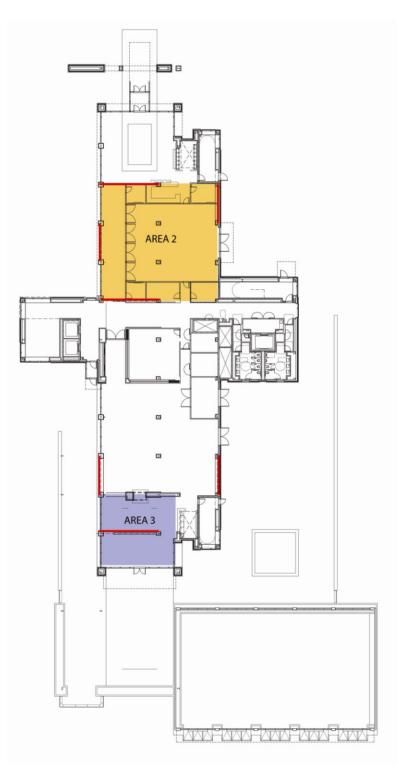
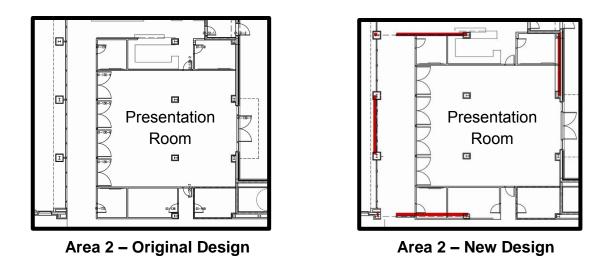
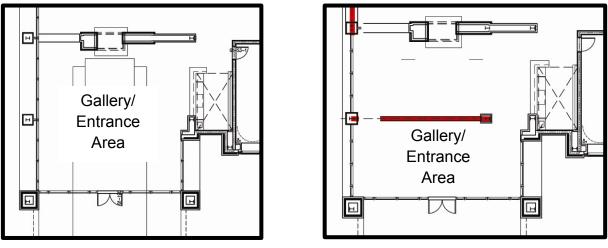




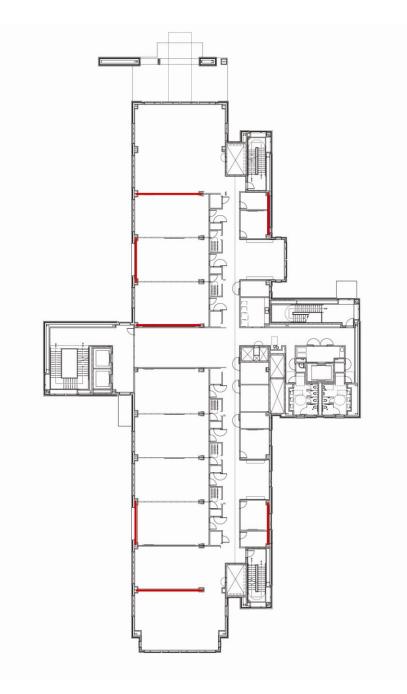
Figure 15 – Possible Openings in Braced Frame


Ground Floor Modified Plan



Area 1 – New Design


The most significant difference to the ground floor plan is near the entrance to the dining hall area. The original design showed storage areas on both sides of the hallway. The new design rerouted the hall to the exterior of the building and combined the storage spaces so the brace would not interfere with the flow of the building. The original design had 750 ft² of storage, while the new design has slightly less at 710 ft².


As the braced frames crossed the hallway on the first floor outside of the presentation room, this area had to be looked at to make sure that the primary flow path through the building was not compromised. As seen in Figure 15 earlier in this section, a 6' wide opening can be created on each side of the 12' wide hallway. This may even be beneficial to the flow as it naturally draws passers-by to the exterior side of the hallway, as not to interfere with people entering and exiting the presentation area. The movement of the column placement inside the presentation room caused no significant changes to the architectural design.

Area 3 – New Design

The gallery/entrance space on floor one is one of the few areas where a brace is placed in a previously completely open area, rather than in a wall. The addition of a wall containing the brace can potentially enhance this space because it adds more wall area in which to display projects. It also helps to control the flow in this area in case security becomes an issue.

Office Floor Modified Plan

The second through fourth floors of the Visteon Village Corporate Center consist of offices and are of identical construction, simplifying the design. All of the brace locations corresponded to an existing wall location, so no architectural changes were needed to integrate the system.

West Elevation

The shaded areas represent the fenestration on the façade that will be affected by the braced frame locations. Since braces are located along the exterior wall in these areas and hidden inside a wall, these windows cannot be used. The elimination of the window elements causes the façade to look unbalanced and detracts from the aesthetics. For this reason a spandrel glass faux window system is being proposed. This ensures that the overall architectural style of the exterior is not compromised as no visual change will be noticeable from the outside.

Construction Process Breadth Study

Since there were various systems being considered for the lateral force resisting system of the Visteon Village Corporate center, it was important to keep in mind how each option would affect the schedule and cost of the construction process. A generalized comparison study was completed focusing on various framing systems and their connections and what their impacts were in terms of time and cost of their fabrication and erection.

The costs and times of fabrication usually depend heavily on the equipment and expertise of the steel fabricator. Due to this fact, precise numbers were not used and a relative study was performed between the connections. A steel fabricator was chosen that was local to the Orinda, CA area so that the information collected would be a realistic representation of construction data in the chosen region of the project's relocation. Schuff Steel was selected, as they are a nationwide steel fabrication company with many locations local to the proposed site. The chart below shows a comparison of the connection types and their relative times to fabricate and erect, as well as relative overall cost. (1=Most, 5=Least)

	Fabrication Cost (\$)	Erection Cost (\$)	Overall Cost (\$)	R
Intermediate Moment Frame (Bolted End Plate)	3	2	1	4.5
Special Moment Frames (Reduced Beam Section)	4	1	2	8
Special Concentric Braced Frame (Wide Flange)	1	3	3	6
Special Concentric Braced Frame (HSS)	2	4	4	6
Buckling Restrained Braced Frame	5	5	5	8

The two moment frame connections were found to be the most expensive connections. This is mostly due to the amount of field welding required in the erection process. A moment frame system was found to be an inefficient option for the lateral force resisting system of the Visteon Village Corporate Center, and this data shows that it is an uneconomical choice as well.

The special concentric braced frame connection was looked at using two different bracing elements: a wide flange and a square HSS. The wide flange bracing scheme came out to be higher for a few reasons. First, the WF connection would require gusset stiffeners which the HSS connection would not need. Also, the amount of material needed and bolts required would go up, causing the overall fabrication time to increase. A rough estimation by Schuff Steel indicated that designing this connection for an HSS shape rather that a wide flange shape would save about \$250 dollars and about three hours of fabrication time per brace end. The drawback of using an HSS system is that the steel is generally 42 ksi instead of the 50 ksi steel used to fabricate wide flange

members. The reduction in strength would cause the overall brace and framing members to be composed of heavier shapes than a wide flange braced system in order to handle the loading.

The buckling restrained braced frame connections came out to be the most economical. The material required is minimized as all of the stability is provided by the brace itself. Gusset stiffeners are not required with this connection and the amount of welding necessary also decreases greatly when compared to a special concentric braced frame system. The erection of this system is also very quick and cheap as only one specially designed pin needs to be installed at each end of the brace upon installation. It must be noted that the bracing members used in this system are much more expensive than a wide flange member used in a SCBF system. While this may be the case, the savings on connection time and cost, as well as the significant reduction of column sizes required make this system an economical choice.

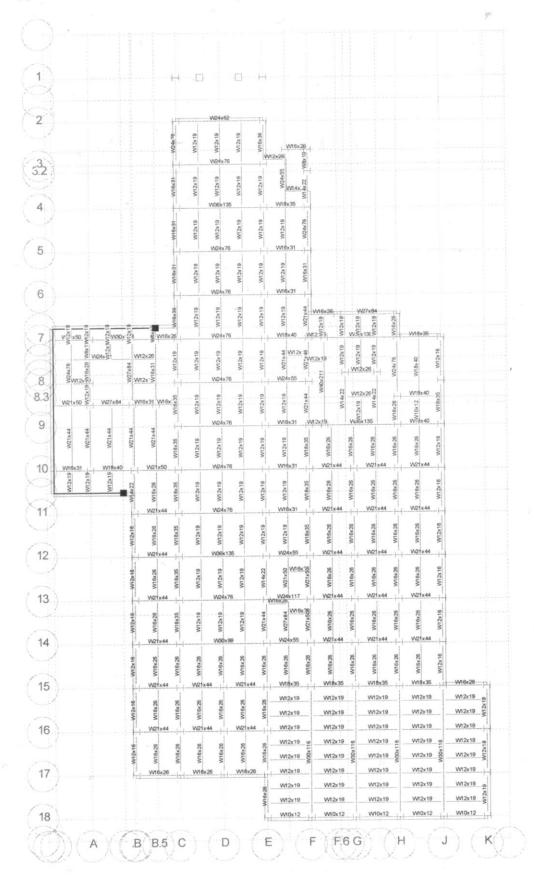
It was concluded that the different connection fabrication and erection times do not make a huge difference on the overall construction schedule. Most of the decisions are solely based upon economy and structural adequacy. While the BRBF system uses much more expensive braces than a typical SCBF system, its savings in connection and fabrication costs of connections as well as the overall reduction of steel for the framing system make this system an economical choice.

Conclusion

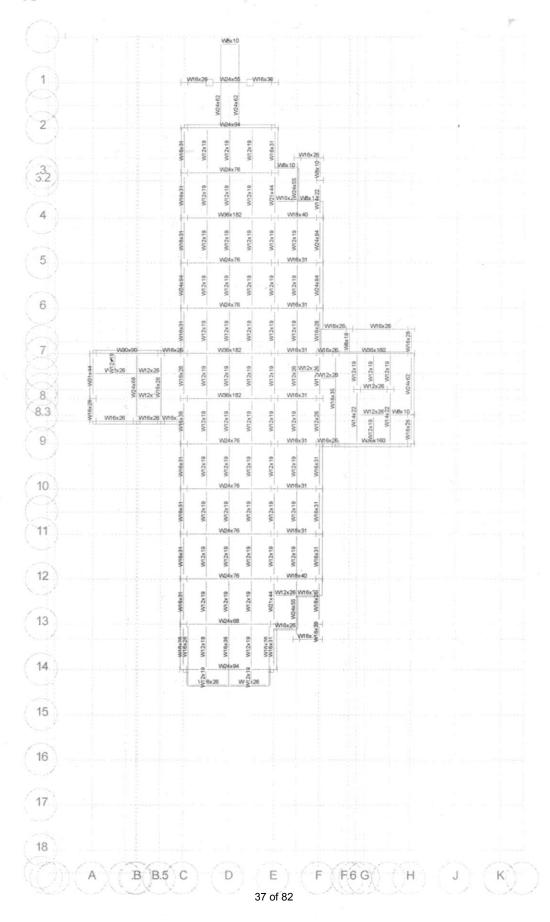
The overall goal of this thesis was to evaluate the feasibility of constructing the Visteon Village Corporate Center in the suburban area of Orinda, California outside of San Francisco, rather than its current location outside of metro Detroit in Van Buren, Michigan. The structural system of the building, specifically the lateral force resisting system, had to be redesigned to handle the large loads caused by the high seismic activity in this area. In doing so, it was determined that a concentrically braced frame system was the most efficient and economical choice of the options assessed. Upon further research, a buckling restrained braced frame system was used instead of a special concentric braced frame for reasons of economy and efficiency.

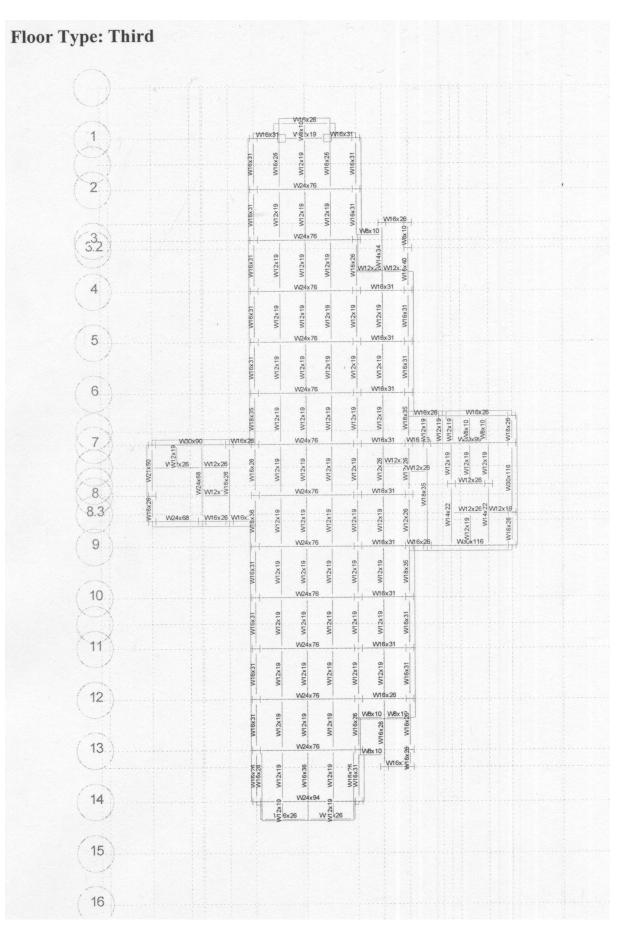
The architecture breadth ensured that the integration of the redesigned lateral system would not compromise the integrity of the architectural functionality. It was shown that through moderate reconfigurations of the plan layout and exterior, it was feasible to mesh the BRBF system into the design of the building's architecture. This assessment leads to the recommendation of the BRBF system for use as the building's lateral force resisting system.

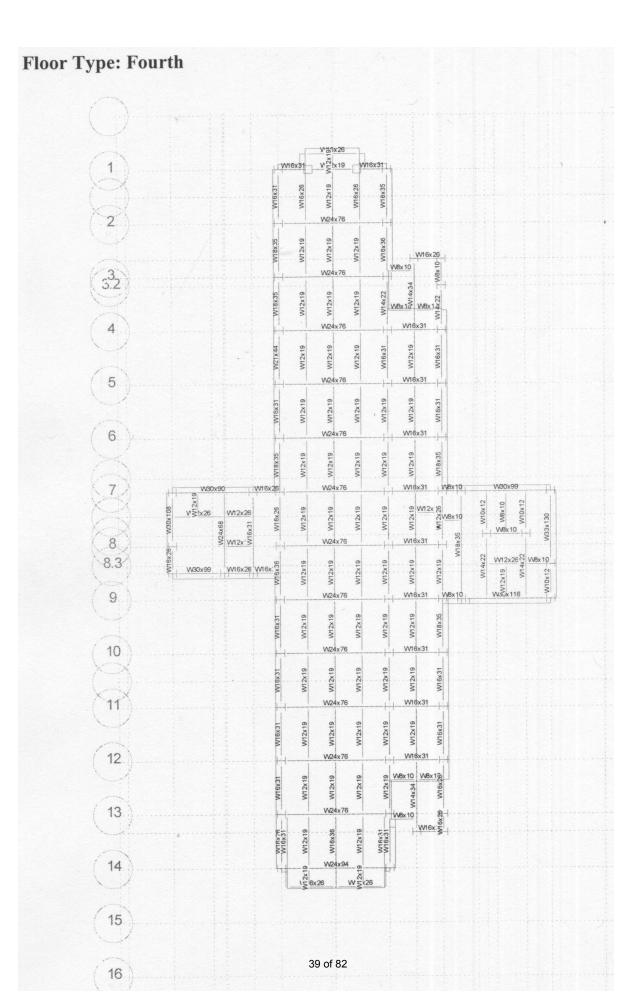
The construction process breadth study focused on the effects that different framing connections would have on the overall construction cost and schedule. It was concluded that the fabrication and erection times did not cause a significant impact on the overall construction schedule. The connections for the BRBF came out to be the most economical as expected, as this was one of the advantages to this system in comparison to a SCBF system. This study reinforces the fact that a BRBF system is the best choice for this project.

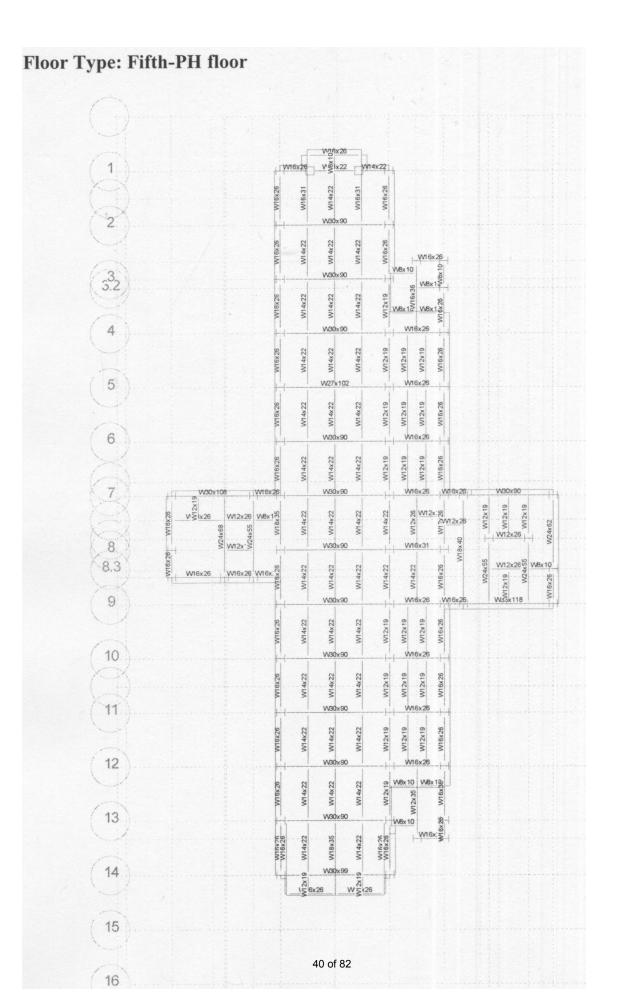

Overall, all of the studies done lead to the conclusion that a BRBF system is the best choice for use as the lateral force resisting system of the Visteon Village Corporate center. The system is structurally adequate, economical, and can feasibly be integrated into the architectural design with moderate alterations. This meets the goal of feasibly designing the structural system of this building to handle the increased loading due to its relocation to Orinda, California.

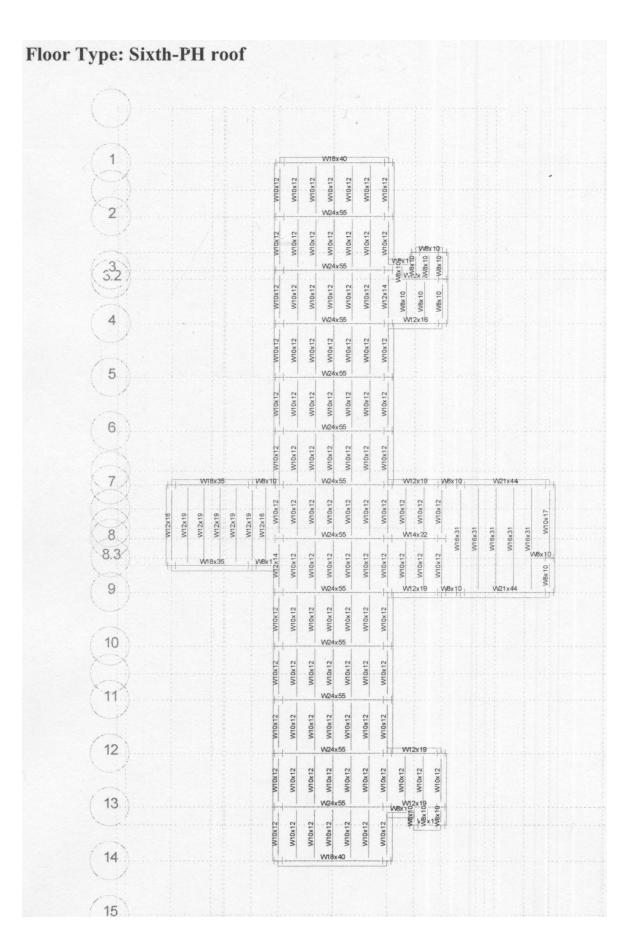
All design values and processes were in accordance to the current applicable codes as listed in the "Design Guides and Criteria" section of this report. Any comments, questions, or concerns can be directed to Jamison D. Morse at JamisonMorse@gmail.com.

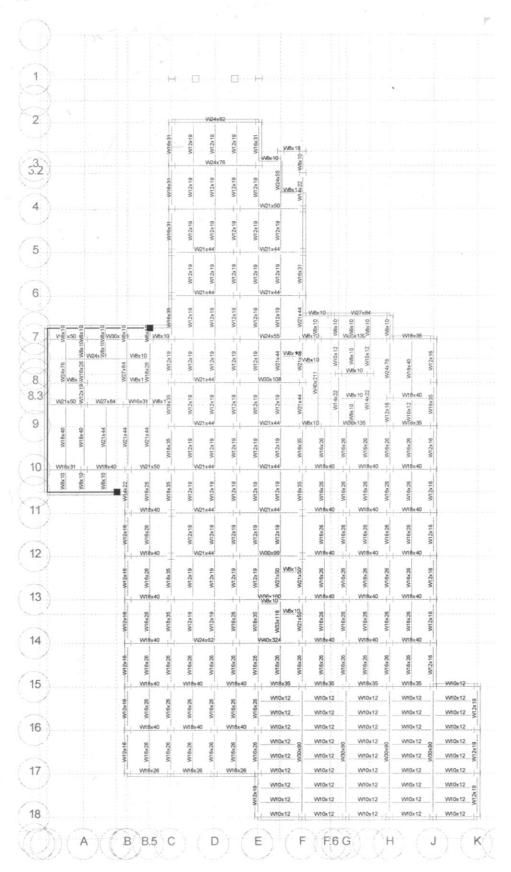

Appendix

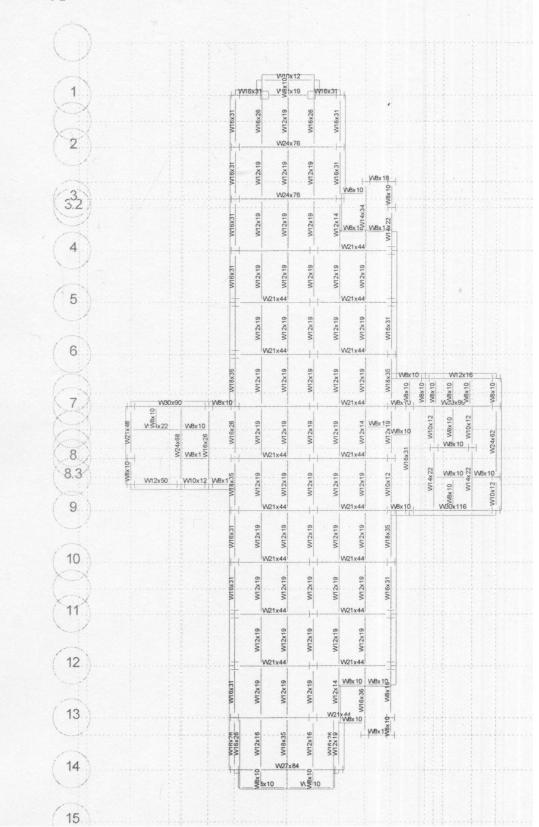

Gravity Framing System (Original Column Grid)


Floor Type: First

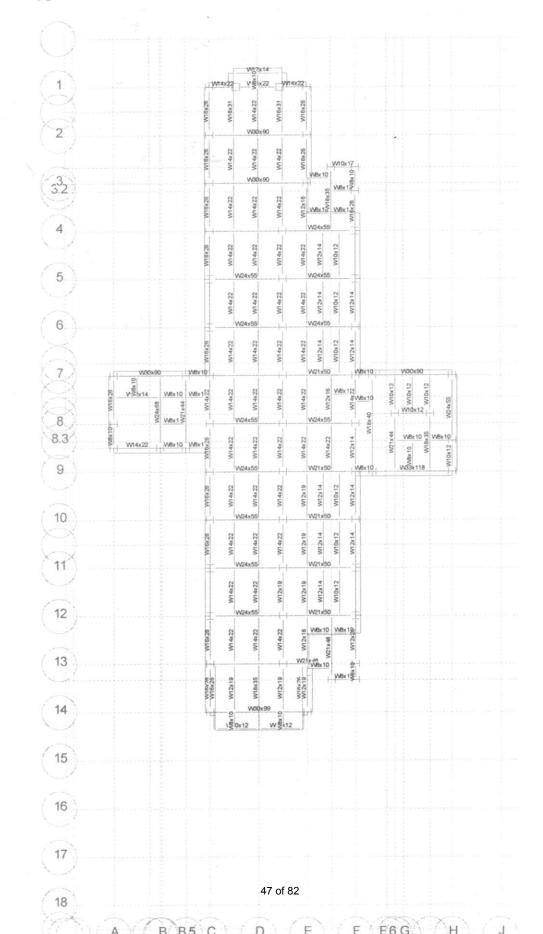


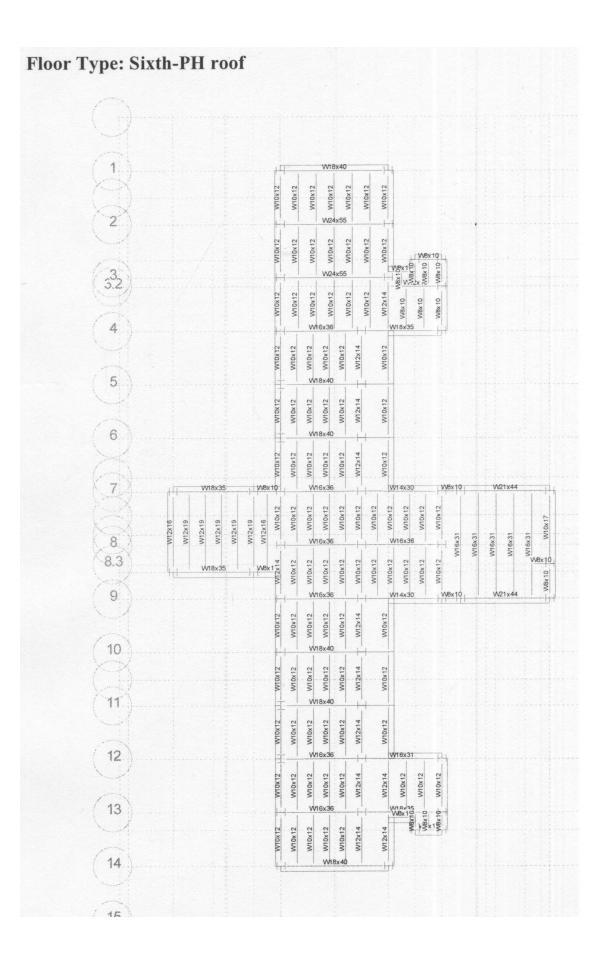

Floor Type: Second




Gravity Framing System (Modified Column Grid)

Floor Type: First


Floor Type: Second W8x10 Anna W16x26 W21x48 W16x36 W21×48 W21×48 2 W24x68 W12x19 W12x19 W12x19 W16x31 W16×31 W8x18 W8x10 3.2 W24x76 22 W12x19 W12x19 W12x19 W18×40 W16×31 W8x18 W8x14 4 W24x62 W12x19 W12x19 W12x19 W12x19 W12x19 W16×31 5 W21x44 1x44 W W12x19 W12x19 W12x19 W12x19 W12x19 W16x31 6 W21x44 W21x44 W12x19 W12x19 W12x19 W12x19 W12×19 W16x26 W8x10 W10x12 W16×3 -W8x21-WBX 7 W21x44 W30x90 W8x10 W8x10 W18x35 10 W10x12 W10x12 W8×10 VX1x22 412x10 X8x10 X8x10 X8x10 W16x26 W12x19 W12x19 W12x19 W12x19 W8x10 W21×44 W24x62 W16x26 W24x68 W8x 10 W16x31 8 W21x44 W21x44 W8x10 M8x10 14x22 W14x22 W14x22 8.3 W14x22 W12x19 W12x19 W12x19 W12x19 W12x19 W10×12 W18×35 W18x35 W8x10 W8x -W10x12-W30x116 9 W21x44 W21x44 W8x10 W12x19 W12x19 W12x19 W12x19 W12×19 W16x31 W16×31 10 W21x44 W21x44 W12x19 W12x19 W12x19 W12x19 W16x31 W12x19 W16x31 W21x44 1 W21x44 W12x19 W12x19 W12x19 W12x19 W12x19 12 W24x68 W21x44 W8x10 W8x10 W12x19 W12x19 W12x19 W18x40 W16x31 W24x62 W16× 13 W24755 W8x10 0 W8x1 W12x16 W16x26 W16x26 W16×26 W16×26 W12x16 W18x35 14 W27x84 01x8M 9x10 10 N 8 10

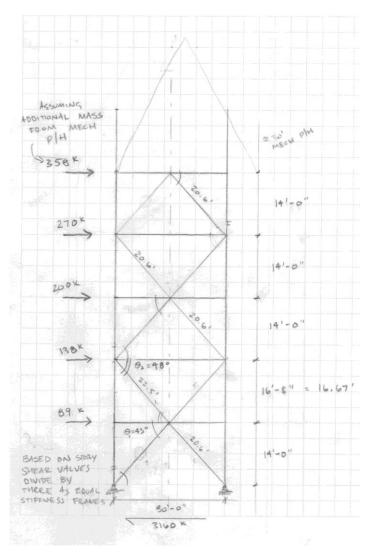

Floor Type: Third

Floor Type: Fifth-PH floor

Special Concentric Braced Frame Design

SmithGroup General Work Sheet	
SmithGroup Incorporated Subject 110 Miller Avenue Ann Arbor, Michigan 48104 Date 1: 734 769 9444 f: 734 769 0999 Drawn By www.smithgroup.com	THESIS RESEARCH
SEISMIL AREA: OBIND	A CA 94563
$S_s = 1.500$ $S_{ms} = 0.9(1.500)$ $S_1 = 0.600$ $S_{m_1} = (1.5)(0.00)$	
SDS = 2/3 (1.500) = 1.00	CATEGORY 111 Fa= 1.0
501 = 2/3 (0,900) = 0.600	SITE CLASS D FY = 1.5
$h_{n} = 108$ $x = 0.75$ $T_{q} = C_{t} h_{n}^{x} = 0.02(108)^{(0.75)}$ $T_{s} = SD_{t} / SD_{s} = 0.000 / 1.00 =$ $SD_{c} = D$ $R = 16 (TBL 12. 2 - 1) / 45C_{c}$ $T_{L} = 12$	0.600 7.05) (SPECIAL STEEL CONCENTRICATLY BRACED FRAMES) = 0.208
PANGE	
$\frac{MN}{C_{S}=0.01} \qquad \qquad$	10/100 = 0/11-0
USE CS = 0.187	
	3160 K 0.67 1.09
TOTAL WT = 16935 K $V = C_{c}W = (0.187)(16935 K)$	1160 F
$Y = C_S W = (0.187)(16935^k)$	2.5 2
TOTAL WT = 16935 K $V = C_S W = (0.187)(16935 K)$ K = 1.09	2.5 2

Structural Option Thesis Final Report


BRBF

SCBF			k=	1.09		V=	3160			
I vl	ht	wx	X	у	wx*ht^k	Сух	Fx	Vx	l	
Fifth	108.48	435	66.86667	207.3333	71948.28	0.071509	225.9669	225.9669		24512.
Fourth	72.67	2525	63.90972	206.2212	269860	0.268211	847.5453	1073.512		78012.
Third	58.67	3042	70.1224	206.7881	257473.6	0.2559	808.6436	1882.156		110426
Second	44.67	3042	70.1224	206.7881	191283.1	0.190114	600.76	2482.916		110911
First	30.67	3147	70.12623	206.8157	131345.4	0.130543	412.5145	2895.43		88802.8
Ground	14	4745	86.45129	139.1551	84239.5	0.083725	264.5697	3160		4424
				Total=	1006150			(Overturning Moment=	456905

lvl	ht wx		х	у	wx*ht^k	Сvх	Fx	Vx	
Fifth	108.48	435	66.86667	207.3333	71948.28	0.071509	169.4752	169.4752	18384.67
Fourth	72.67	2525	63.90972	206.2212	269860	0.268211	635.659	805.1341	58509.1
Third	58.67	3042	70.1224	206.7881	257473.6	0.2559	606.4827	1411.617	82819.56
Second	44.67	3042	70.1224	206.7881	191283.1	0.190114	450.57	1862.187	83183.89
First	30.67	3147	70.12623	206.8157	131345.4	0.130543	309.3858	2171.573	66602.13
Ground	14	4745	86.45129	139.1551	84239.5	0.083725	198.4273	2370	33180
				Total=	1006150			C	Overturning Moment= 342679.3

V=

2370

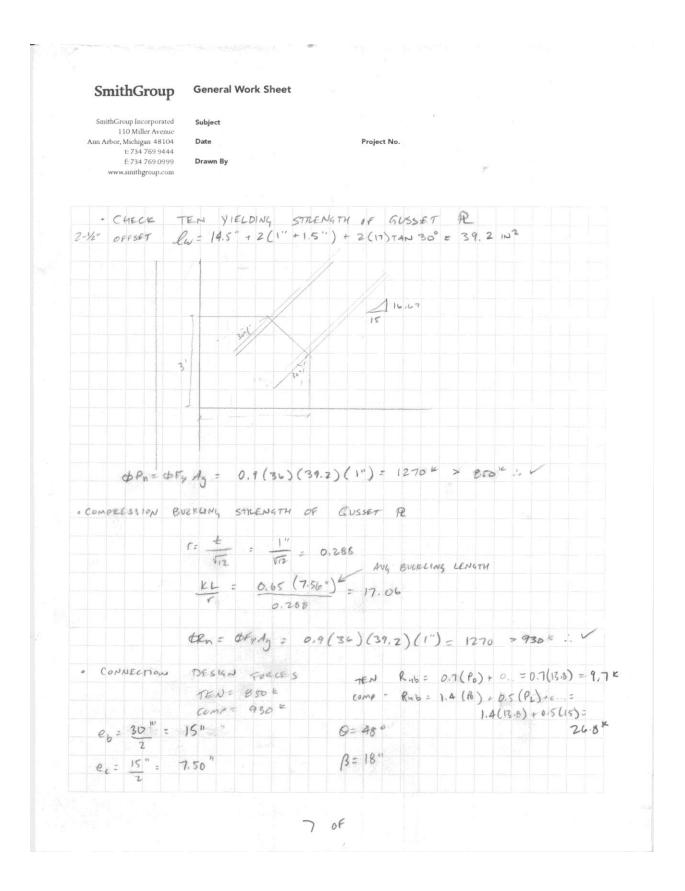
	Smith	Gro	up	Genera	al wor	k Snee	et										
	SmithGroup 110	o Incorpoi Miller Av		Subject							1						
1	Ann Arbor, Mi t: 1	chigan 48 734 769 9		Date					Projec	t No.							
		734 769 (hithgroup		Drawn By	У									e ::			
		8 1															
	STORY		2	0	LACE												
	STORY		6	P	CACE												
	Pu =	14	24 K														
	Tu =												~	Cam			
			5 =	18'	UNER	MED	>	W 14	× 14	5	0-	18'	4	bPn =	1550	2 10-	(4-1)>
																	13534
	1			-					uniper en en en en en en en en	7			-				
	10	SE	wI	4 × 1	45	For	- ML	32	ARES								
		W14	ix 14	5	A -	42.	7 .22										
					d=	14.8	٤., ۱										
									1	1							
	60	CUM	2	1.2.4		94 1	/ .	12	21.5	1							
		f	o = 4	(21)) + (12)((27) .	+ (3	192)	(27) =	14:	SK	_			
				1 74 12	No de	11501	00) (21	15) +1	30/10	00)(29.3)	= 1	70				
		+	L= 4	1		11	1	-	1		-						
		PG	DE =	1055	57 (7 K												
		PG	L = 4 }E = = 0	1055		ater year											
		P G Ps)e = = 0	1055		2.44 - 1 - 1											
		PG Ps Pu =	e = = 0 = (1.2	1055) 14	2.44 - 1 - 1		\$6105!									
		PG Ps Pu =)e = = 0	1055) 14	2.44 - 1 - 1											
		Pa Ps Pu = Pu Tu	F = 0 $= (1, 2)$ $= 1$ $= (0)$	1055 + 0.2 UGO .9 - 0) 14 K	5*	(1:3		574) +	0.5	(170))	+				
		Pa Ps Pu = Pu Tu	r = 0 = $(1, 2)$ r = 1	1055 + 0.2 UGO .9 - 0) 14 K	5*	(1:3	YC105!	574) +	0.5	(170))	+				
		Pa Ps Pu = Pi Tu Tu	<pre>> = 0</pre> = (1.2 = (0 = (0	1055 + 0.2 UCO .9 - 0 1270) 14 k	5 K +	- (1,3 ² , †	\$C1051 1.3 E	53) + 1055	0,5	1.6	(0) (0)	.+				
		Pa Ps Pu = Pi Tu Tu	x = 0 = (1.2 y = 1 = (0 = - 14×15	1055 + 0.2 1000 .9 - 0 1270) 14 K (12) X	5 K + 145 1 LAED	- (1,3) (105) 1,3 (- 7' MI	53) + 1055	0.5) +	1.6	(0) (17	+	D			
		Pa Ps Pu = Pi Tu Tu	x = 0 = (1.2 y = 1 = (0 = - 14×15	1055 + 0.2 1000 .9 - 0 1270) 14 K (12) X	5 K + 145 1 LAED	- (1,3) (105) 1,3 (- 7' MI	53) + 1055	0.5) +	1.6	(0) (17	+	D			
		Pa Ps Pu = Pi Tu Tu	x = 0 = (1.2 x = 1 = (0 = - 14×15 Ag	1055 + 0.2 (CO 1270 9 = 46.) 14 k 1.2) x UNBI 7.10 6.35	5 K + 145 1 LAEO 2	- (1,3 	\$C1051 1.3 E	53) + 1055	0.5) +	1.6	(0) (17	+	D			
		Pa Ps Pu = Pi Tu Tu	x = 0 = (1.2 x = 1 = (0 = - 14×15 Ag	1055 + 0.2 1000 .9 - 0 1270) 14 k 1.2) x UNBI 7.10 6.35	5 K + 145 1 LAEO 2	- (1,3) (105) 1,3 (- 7' MI	53) + 1055 42	0.5) + ØPi	(170 1.6 n= d= two	(0) (0) 17 .15 0,7	+ 40 10 145	0			
		Pa Ps Pu = Pi Tu Tu	$r_{x} = 0$ = (1.2 = (0.2 = (0 = - 14 × 15 Ag r_{y}	1055 + 0.2 (CO 1270 1270 1270 1270 1270 1270 1270	14 k 14 k 12) k 110 6,30 4,00	5 K + 145 1 LAEO 2 10	 <td>) (105) 1,3 (- 7' MI</td><td>53) + 1055 42</td><td>0.5) + ØPi</td><td>(170 1.6 n= d= two</td><td>(0) (0) 17 .15 0,7</td><td>+ 40 10 145</td><td>0</td><td>7.22</td><td></td><td></td>) (105) 1,3 (- 7' MI	53) + 1055 42	0.5) + ØPi	(170 1.6 n= d= two	(0) (0) 17 .15 0,7	+ 40 10 145	0	7.22		
		Pa Ps Pu = Pi Tu Tu	x = 0 = (1.2 x = 1 = (0 = - 14×15 Ag	1055 + 0.2 (CO 1270 1270 1270 1270 1270 1270 1270	14 k 14 k 12) k 110 6,355 4,00	5 K + 145 1 LAEO 2 10	 <td>) (105) 1,3 (- 7' MI</td><td>53) + 1055 are 1</td><td>0.5) + ØPi</td><td>(170) 1.6 $d =$ $d =$ tw^{2} $= 0$</td><td>(0) (0) 17 15 0,7 30</td><td>+ + + + + + + + + + + + + + + + + + + +</td><td></td><td>7.22</td><td></td><td></td>) (105) 1,3 (- 7' MI	53) + 1055 are 1	0.5) + ØPi	(170) 1.6 $d = $ $d = $ tw^{2} $= 0$	(0) (0) 17 15 0,7 30	+ + + + + + + + + + + + + + + + + + + +		7.22		
		Pa Ps Pu = Pi Tu Tu	$r_{x} = 0$ = (1.2 = (0.2 = (0 = - 14 × 15 Ag r_{y}	1055 + 0.2 (CO 1270 1270 1270 1270 1270 1270 1270	14 k 14 k 12) k 110 6,355 4,00	5 K + 145 1 LAEO 2 10	 <td>) (105) 1,3 (- 7' MI</td><td>53) + 1055 are 1</td><td>0.5) + ØPi</td><td>(170 1.6 n= d= two</td><td>(0) (0) 17 15 0,7 30</td><td>+ + + + + + + + + + + + + + + + + + + +</td><td></td><td>7.22</td><td></td><td></td>) (105) 1,3 (- 7' MI	53) + 1055 are 1	0.5) + ØPi	(170 1.6 n= d= two	(0) (0) 17 15 0,7 30	+ + + + + + + + + + + + + + + + + + + +		7.22		

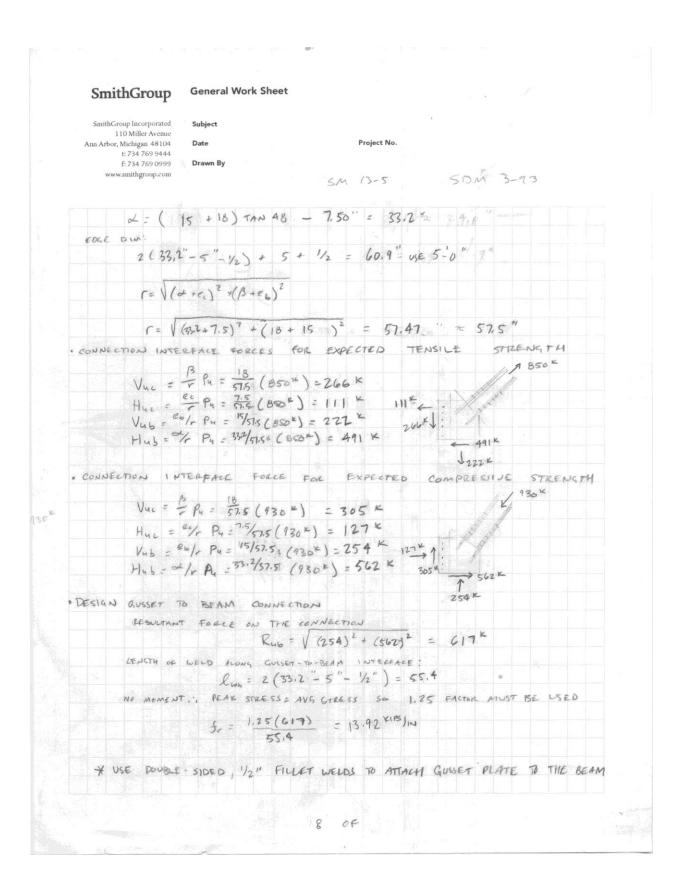
C	ith Course	General Wor	rk Sheet			
51	nithGroup	General wor	k Sheet			
Smi	thGroup Incorporated	Subject			¥	
Ann A	110 Miller Avenue bor, Michigan 48104	Date		Project No.		
	t: 734 769 9444					
	f: 734 769 0999 www.smithgroup.com	Drawn By			7	
	ALCORDING	70 1	-Z SDM	and VIS	9 SAMSFIE	
			CONDITIONS		1 Stellstic	3 33
	LOCAL	BUCKLING	CONDITIONS	-1 V		
6.00	6.0M.0.4.0					
COL	COMPRESS	IVE STRE	NG TH			
	KL .	10/16-6	7') (12 "/ FT)			
	F		G IN	- 50.0		
		410				
	1 7, 18,	Fy = 113				
	4.11	y = 113				
	r -	T2 8	10000			
	re i	$\frac{\pi^2 E}{(s_0)^2} =$	119.451			
		(50)				
	YL/	= /15 5	0			
	1	Fin = [0.65	(50/114)]5 58]5	0 = A16	Ke'	
		L	-]		- 51	
		Pn= Fce	Ag = 41.6 0	i (46.7) =	1943 K	
		BPn= 0.	9 (1943) =	1749 = >	1660 K	:. V
		Contraction of the				
TEN	SION					
	D Pas	0.9 (50) (46,7) = 21	01 4 > 12	-70 K V	
		No.				
	ANAL LOAD	KAROS				
			270	, , ,		
		0Ph = 17	149 = 0.73			
		Pч	1	8.3)		
	1	P4 bpn = 01	95			
	4					
	USE	W14 × 159				

SmithGroup	General Work Sheet		
SmithGroup Incorporated	Subject		
110 Miller Avenue nn Arbor, Michigan 48104	Date	Project No.	N-S
t: 734 769 9444 f: 734 769 0999	Drawn By		
www.smithgroup.com			7
COLUMN			
Po= 4(2	0") + (9 +) (20 ×)	+ (20/92) (20=)) = 107 K
P. = 4(2)	5") + (15"/100) (25"	+(30/100) (250) = 145 K
PRE = 792			
Ps = 0			
Pu = (1.2 +	012) 107 K + (1.3)	(792 ×) + 0.5	(145 =) = 1252 K
Tu = (0.9	- 0,2) 107 + 1.	3(-792×)+16	(0) = -955 K
UBLZ	17		
W14×12	0 00		
	1' OPn= 1280 ">	IDDX: V	
C OPU-I	i orn= = = = =	125 2	
F	-6		
E-W BRA	CE (12 + 12 - K +	(528) +	0.5 (29.3 K) = 842 K
Tu =	(0.9-0.2)(27 ")	+ 1.0 (528) +	1.6 (w) = 807 K
		(00(45)	
		VBL =18'	
USE	W14×90		
QUB	L of 181 Opn = 924	3 × > 842 ×	~
N-5 BRA	CE /	241 K	
P4 = (1	1.2+0.2) 20× + (*	s (35°) + 0.5 ("	255) = 4915
Ty = (1	0.9-0.2)(20") + 2	05(28) + 116 (6) = 497 -
		UBL2 15'	
USE		UDLEIS	

Special Concentric Braced Frame Connection Design

S	SmithGr 1 n Arbor,	oup Incorp 10 Miller A Michigan t: 734 769 f: 734 769 x.smithgrou	oorated Avenue 48104 99444 90999	Subjec Date Drawn	t P	Vork ,RAC			Ect	167		DE		2	(w	-540	tpe_	BRA	C.P.)	
SDM	3-	79 €	54 3,1	2			BRAC		a management	and the second s	BEA	aminute.									
			wi					BRI	AC.E	= W	14 ,	90					MN =				
			" tw		1 S		d bj	= 14	4.0"	1	19:	26	5 IN		d =	12	0 " 6 "	4		46.7	12
	by =	14.6"	ts.	= 2:	28"		by	= 14	7.5"	ŧ	w F	0.4	40"		b _f =	15.	6 "	tw	= 0.	745	
	(in:		4	\$1			Fde	s = 1	131	ť	5 - 0	7.71	0 "	¥	edes =	1.7	9 "	ty =	1.1	1 "	
9 <u>1</u>	EXPE	CTE D	TENS	ILE	DE	SIGN		OF	BRAC	E			-	1		K					
	-	Tu	= Ry F	y A	9 .	- 1	1 (5	0)(0	U.S) -	141	0	T	>	850						
• 1.			ES No	MIN	AL	rom	10 c	STRE.	JETP	1											
		UBL			K.	-	220	K													
1.1 Ry	Pn =	1.1 (1.1) (621	_)	=	190	-													
	WEI	P:	CONNEC					a.			*										
	100	Į.	ONN.	X	Co	NNEC		46	The I		15	Bě	ME	5							
			NgE		4			2													
		WE				2.7															
						7,9		1		-											
					0				50.												
			x =	E ZA		3	8.16	14	3	- A.	82	"									
				2.1		7	.92	w2			Ĩ										
	U	USING	101.	co	NNS	cho	NL	SNG.	TH												
			U =	1 -	1×1	= 1	- 2	4.82		0.	132										
					e			10				-									
			A.	= 4	2=	24	12														
			Ae =	U,	4	(0.73	2)(24	NZ) =	19	. 41	IN							
•	STRE	NETH	REW	AREI	> P	ER	INCO	1 05	- 4	6-4	O										
		950	د ا	1.80	K/	1.63			181	K								FI	-		
		4 (18	5 - 1	1101				-11	200	KI	in	-	8.4	8	1 x 7 E	ENTI	15 -	7/	8" 1	FILLE	T
		1	44					1.	592										6	VELD	


Smith	roup	General	Work Shee	et					
SmithGroup In		Subject							
Ann Arbor, Michi	ller Avenue gan 48104 1769 9444	Date				Project No.			
	4 769 0999 1group.com	Drawn By						٣	
tmin=	(3.09		= (= 0.4	75″		
	Fu	brace		65					
	ty	= 0,710	' > 0.	475"	2.	/			
USE	18	INCH L	Ng 5	18"	ALLER	WELDS	ALONG	EACH	FLANGE
		er Tr							
MUAL	CONNE	TION 1	2 THIC	KNE	SI .	(" > 0.	475° V		
	b=	14+21	1")=	16"	R	~> ""	THICK R		
CONNECTO									
(TEN)	Ru+ =	1/2 (8	5)=	425	K				
(COMP)	Rue	= 930 4/	- 4	USK					
SHEAR	YIELDI	35 578	ens th	of (ONNER	TION	PLATES	×	
	Ag = 2	(18)(1')= 3	6 10	2				
	ORn =	\$ 10.6	Fy) Ay =	1.0((0.6)(.	50 Ksi)((36 in 2) =	1080 K	
		1080	* 7 7	465 K		-			
BULTS BE	TWEEN						FLANGE	P	
517-	y 1-	1/4" A	490 N	4	oyln=	\$5,2 ×	BOLT		
٨	lb =	930,4	= 8.	43 2	10	BOLTS	IN Z F	20WS	
	S						ictions pl	ATE-TO.	FLANGE
		P	ATE	CONN	ECTION	18			

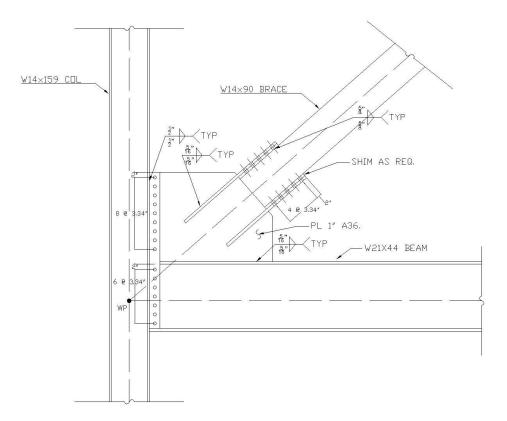

SmithGrou	÷			
SmithGroup Incorpor 110 Miller Ave Ann Arbor, Michigan 48	enue	Project No.	E State of the second second	
t: 734 769 9 f: 734 769 0	444	1 10 10 10 10 10 10 10 10 10 10 10 10 10		
www.smithgroup.	:om		19 P	
			-	
- BEADING	STRENGTH OF CONNE		N/ 22/3 0/6 SPACIA	15
	\$rn= 118 (1")=	118 K/BOLT	2.65" 4@ 3.34" 2"	
	4		00000	
	Ørn= 78.6 (1")= 7	B.G TEOLT	00000	
	78.6 K /BULT >	SED KLANE	Contraction of the second seco	
	18.6 P	BULT		
R	IS ADEQUATE .			
· SHEAR	EVENUE STRENGTH	OF CONNECTION	PLATES	
	36112 - 2(5)(1)			1.02
	DRu= 0.75(0.6)(65) = 650 K	
	650 = 246	125 K .'. V		
2.63"	4@ 3.34" 2"	- 25		
	forman for t			
		na fanglin (angelander) Na fanglin (angelander)		
	ANAA - F3-		E BRACE	
	- BLACK SHEAR			
	(COMPRESSION)	>		
	10 - Marchard and	20.72 12		
Agve	2(2+4(3.34))(1") =	JUILIN LAN	C., 2	
Any=	30.72 in2 - 2(45)(14 ("()") - (n)2	10 (1) = 18.3	53 IW	
Agt :	$6'(1'') = 61N^2$ 6 - (1)(1'/4 + 1/8)(1)	= 4.63 12		
FulAnc	= 65 (4,63) = 300 K			
0,6 Fu Ar	1 = 016 (45) (18.35)	5715 E		
0.6 Fy Ag	V= 0.6 (50) (30.72)	= 921 K		
50				

Sm	ithG	roup	Genera	al Work	Sheet								
		1											
Smith	Group Inco 110 Mille		Subject		t								
Ann Arb	or, Michiga t: 734 2	an 48104 769 9444	Date				Proje	ct No.					
w	f: 734 ww.smithg	769 0999 roup.com	Drawn B	y							je.		
	0												
	P	- 0	.6 Fu A		1) F	Δ.	6 01	E.A.		14.5	. A		
			0.75										
		~n-	0.1.0	Lus	761 K				2 / - /		e c g	2	
							115						
			76	JK >	> 465	ж	-						
					= 425								
-	USE	1" 3	× 16"	ASTU	MAS	572	GRA	DE	50	CONN	ite me	Ind	R's
							+		and the second sec				
- DE	TERI	NINE	TRIA	IL A	ICENE	53 -	FOR	FLAN	JGE	R	5		
		<u>,</u>				H							
			16 -					TRY		1/2"	Ð	ASTM	Are 1
		b bot =	16 +	- 200.	= 18.	0		Ind		12.	IE .	151701	136
* BE	ARIN	4 STO	ENGTH	FOR	FLANG	E A	25						
			= 105					-					
i ca n	230	dr	= 70	11.5	1. 10	5.1K1	BOLT	(2 "	GE DI	5)		
					55.2)		
· T	ENSIO	N YI	ECOIN					Ŧ				10	~
RITICAL			$e_h = q$						- 68	80 K	>	465	
OVER	4-6-14				/	11_							
•	TENS		PUPTU					LANE			2		
(WP as	amen	2 /	An= 21									<	
					0.05 (2							USE	
			en= a						5(5	8 hsi)(1.0]	(16.0	8)
			ORn=	734	2 7	465	E	L					

Smith	Group	General Wor	k Sheet					
	Incorporated Miller Avenue	Subject				12		
Ann Arbor, Mic		Date			Project No.			
f: 7	34 769 0999	Drawn By					145	
www.sm	ithgroup.com						/	
· 81		EAR RUPT				INGE RS	;	
	Agv =	2 (2" + 4	(3.34))((1.5)= 4	H6 INZ			
	Anv = 41	61N2 - 2(4.5)(1	1/4"+ 1/8	")(1.5 ") = 27,4	4 INE	
1	Agt = 6	0(1.5)= 9	122					
+	nt = 9	- (1)(114	+ 1/8)(1	-5")=6	.94 IN			
- F	1	the 1 1 and						
		58 (6.94)						
		0.6(58)(
0.6	Fy Agy =	0.6 (36)	(46) =	4932				
MP.	- 075	Form 1	101100	17.	and T		140217	
447	1-0.75	[955 + (1.0)(40	2) 4	0,75 1 9	193 + 1,0	(402)]	
)	017 2 2	1046	2			
				1010				
		1017	= >> 46	5 E .:	~			
· SHEA	2 LAL	OF FLAN	E PLAT	TES AT	WELDE	D CONNE	crud To	GUSSET T
		s-' X ≈						
		1) =	1- × -	1- 1-	4 = 0,	75		
Put 1	LANCE PR	Ŭ	e	b				
	An= (18	- 11/4) ((.5) = 2	5.1 10	2			
	Ae : UAn	= B.75 (25.1) =	18.8 11	2			
	\$ Pn =	ØFn Ac	= 0.7	15 (58)	(18:8) =	817K	> 465	'. L
	NE R							
Tex		U= 1	14	0.806				
					1			
	A	n= (14 - 1	1/4")(1.5	- ") = 1°	I IN			
	Ae =	UAn= 0	.806(19.	P) = 15	1411		11-4	1
	OPh = PI	Fu Ac =	0.75 (58	3)(15.1	-) = 670	> ~ >	965	~

SmithG	10-P			
SmithGroup Inc 110 Mill	corporated Subject ler Avenue		16 - 16 16	
Ann Arbor, Michig t: 734	an 48104 Date 769 9444	Project I	No.	
	769 0999 Drawn By	1		
	B I			
			FLANGE RS + 1/2 = 3.25"	that c
ASS	SUMING 1/2" SETBAC	K UBL = 2.75	T 12 - DIES	AVG
	r= = 1.	0,433"		
	Viz- Vi			
	KL = 0.65 (3	.25) - 4.87.	1	
	V 0.43			
	An= 1.5 (14+	18) = 481N2		
	OPn = OFy Ag =	0.90 (36) (48)	= 1555 2 >>*	465 "
• USE	11	ISTM A36 FO		5
USE			PLATE AND	
	18" WLOTH F	OR BUTTOM	FLANGE PLA	TE
		ILES	0.0111	. 1.21
FACE	and the second sec		3.34" BOLT SI	
	6" GAGE AN		DIST @ BLAC	EEND
	OF CONNECTION	AND FLANGE	PLATES	
. DEST	GN WELDS CONT	ECTING FLAN	ILE PLATES T	2 GUSSET
		PLAN	1	
	\$PRn = 1.392 D.C.	MIN= S	116 - 000 -	Ved CTA
		1114		
	1.392 (4 WELDS)(5)(17")=	473× > 40	5 E .: V
· CH6	ECK GUSSET R FR	ACTURE AT FU	ANGE R WELD	3
			TRY 1" ABL	GUSSET TE
	timine = G.	19D 6.19 (58	5)	
	F	50	0.534 "	
	1"	> 0.539" :		
			ON EA SIDE O	

1	General Work Sheet			
SmithGroup Incorporated	Subject	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
110 Miller Avenue Ann Arbor, Michigan 48104		Project No.		
t: 734 769 9444 f: 734 769 0999	k	· (1)		
www.smithgroup.com			٣	
· GUSSET	PLATE BUPTURE AT BE	AM WELDS		
which GU	SSET PLATE THILENES	Emin = (6.19 KIDE/IN) (B/1.25) = 0,684" c	0.75
		58 Ksi		
· CHECK	LOCAL YIELDING OF BEA	M WEB FOR TENSI	ON AND COMPRESSIO	N
SM T	86 9-4 FOR W27 X336			
		\$R2 = 63 K/1		
	SR2 = 4834 + 55.4"(163			
	LOCAL WEB CRIPPLIA		COMPRESSION	
ØK.	$5 = 708$ = ϕR_6	= 9LIS FIIN TEA"/ MAR	KIN ANK 25	-
	des + NORG = 7			
	= (Vyc + Vyb - Rul			
thum	en + B			
	C 6 7 / 7			
	= (305 k + 254 k	- 26.8 14) (2.5") =	40.3 K	
	(15 " +	18")		
FOR	LE COMPONENTS AT CO	NNECTION: (IONTROLL	ING IS COMP)	
	Vu = Vuc = 305 K			
	Hu = Hue + Hum = 12	7 + + 40.3 % = 16	7,3 4 -	
	ULTANT LOAD AT CONN		1 K	
	$R_{4} = \sqrt{V_{4}^{2} + H_{4}^{2}} = 1$	305 2 - 167 2 = 3		
· DESIGN B	Ru = $\sqrt{V_{u}^{2} + H_{u}^{2}} = 0$ Souts AT GUSSET - TO -	305 - 167 - = 3 SINGLE-PLATE CONN		
· DESIGN B	RU= $\sqrt{4.2 + H_{12}} = \sqrt{4}$ Souts AT GUSSET - TO - 14" A-490 N 55.2	3052 - 76722 = 3 SINGLE-PLATE CONN - /BOLT	ecnew	
· DESIGN B	$R_{U} = \sqrt{V_{1}^{2} + H_{1}^{2}} = \sqrt{V_{1}^{2}$	305 - 167 - = 3 SINGLE-PLATE CONN	12000N 30.7" 260	
- DESIAN B TRY 1 V	$R_{4} = \sqrt{V_{4}^{2} + H_{4}^{2}} = \sqrt{V_{4}^{2}$	$\frac{1}{305^2 + 167^2} = 3$ SINGLE-PLATE CONN - 1BOLT S.17 \Rightarrow 9 BOLTS	ecnew	
• DESIAN B TRY 1)	Ru = $\sqrt{V_{42}^{2} + H_{42}^{2}} = \sqrt{V_{42}^{2} + H_{42}^{2}} = \sqrt{V_{42}^$	$\frac{305^2 - 767^2}{305^2 - 767^2} = 3$ SINGLE-PLATE CONN - /BOLT - /BOLT - 9 BOLTS	12000N 30.7" 260	
 DESIAN B TRY IV CHECK SIN TRY 5/8 	PLETANT LOAD AT CONN Ru = $\sqrt{V_{4}^{2} + H_{4}^{2}} = \sqrt{V_{4}^{2} + H_{4}^{2}} = \sqrt{V_{4}^{2} + H_{4}^{2}} = \sqrt{V_{4}^{2} + H_{4}^{2}}$ South AT GUSSET - TO - 14" A - 490 N 55.2 = <u>451</u> <u>451</u> <u>5512</u> = <u>6</u> <u>5512</u> = <u>7512</u> = <u>7</u>	$7305^{2} - 767^{2} = 3$ $SINGLE - PLATE CONN - /BOLT - 17 = 9 BOLTS - 78L 7-5$	12000N 30.7" 260	
- DESIAN B - TRY 1 V - CHECK SIN TRY 5/8 SPACIM- 3.34" Ørn (22/5 dB)	$R_{u} = \sqrt{V_{u}^{2} + H_{u}^{2}} = V$ $R_{u} = \sqrt{V_{u}^{2} + H_{u}^{2}} = V$ $South AT GUSSEF - TO - 14'' A - 490 N 55.2 u$ $\frac{45}{55.2 \times 16007} = 6$ $\frac{45}{55.2 \times 16007} = 6$ $VGLE PLATE BEARING '' THICK R = 118 (0.625) = 73.7$	$\frac{305^2 - 167^2}{305^2 - 167^2} = 3$ $\frac{1}{8} \frac{1}{100} = 1$ $\frac{1}{8} \frac{1}{100} = 9$ $\frac{1}{8} \frac{1}{100} = 1$ $\frac{1}{100} = $	12000N 30.7" 260	
- DESIAN B -TRY 1 V - CHECK SIN TRY 5/8 SPACING=3:30" Φrn (2 2/5 dB) EDGE Φr.	PLETANT LOAD AT CONN Ru = $\sqrt{V_{4}^{2} + H_{4}^{2}} = \sqrt{V_{4}^{2} + H_{4}^{2}} = \sqrt{V_{4}^{2} + H_{4}^{2}} = \sqrt{V_{4}^{2} + H_{4}^{2}}$ South AT GUSSET - TO - 14" A - 490 N 55.2 = <u>451</u> <u>451</u> <u>5512</u> = <u>6</u> <u>5512</u> = <u>7512</u> = <u>7</u>	$\frac{305^2 - 167^2}{305^2 - 167^2} = 3$ $\frac{1}{8} \frac{1}{100} = 1$ $\frac{1}{8} \frac{1}{100} = 9$ $\frac{1}{8} \frac{1}{100} = 1$ $\frac{1}{100} = $	12000N 30.7" 260	
- DESIAN B - TRY 1 V - CHECK SIN TRY 5/8 SPACIM- 3.34" Ørn (22/5 dB)	$R_{u} = \sqrt{V_{u}^{2} + H_{u}^{2}} = V$ $R_{u} = \sqrt{V_{u}^{2} + H_{u}^{2}} = V$ $Socts AT GUSSET - To - 14" A - 490 N 55.2 = 44$ $\frac{451^{2}}{5512^{16}/647} = 8$ $\frac{451^{2}}{5512^{16}/647} = 8$ $SGLE PLATE BEARING " THICK R = 118 (0.625) = 73.7$ $h = 78.6 (0.625) = 49.$	$\frac{305^2 - 167^2}{305^2 - 167^2} = 3$ $\frac{1}{8} \frac{1}{100} = 1$ $\frac{1}{8} \frac{1}{100} = 9$ $\frac{1}{8} \frac{1}{100} = 1$ $\frac{1}{100} = $	30.7" 200 MAVE 36".	


Smi	thGroup	General V	ork Sheet			
	roup Incorporated 110 Miller Avenue r, Michigan 48104 t: 734 769 9444	Subject Date		Project No.		
ww	f: 734 769 0999 w.smithgroup.com	Drawn By			7	
	CHECK G		1 1			
			STAR BEARING		R AND IS	THICKER
			very it is	ok		
	GUSSET	YIELDING	(U. 6 Fg) Ag = 1.0	m W 21, KSi > (21 ")	(3/4") - 503	2K DOLD K
			(0.0 +3) AJ = 1.0	(vie) scenes ((sce)	(14) = 303	5-2570 .
,	BLOLIC SHE	AD 01	PTURE OF GUSSET	The STATZ	PLATE CONNI	CTION
			8(3,34")] (0.625)		PC470 FORM	
	A.	- 17.9.	12 - B.5 (11/4 +	1/2) (0.425) = 10	6 INE	
			1.625): 1.56 IN		V III	
			2 - 1/2 (11/4+1/8)(12	
	Fu	445 51	KSi (1.131H2)=	65.5 K		
			6 (58) (10.6) = 3			
			0.6 (36) (17.9) =			
	ØRn=	0,75 [36	8 = + (1.0) (65.5)] = 0.75 [3	86+65.5]	
			325 €			
			33 8.8	0 4 348 × .:	NO GOOD	
	TRY 1"	R	~/ 3,39" (22/3dB)	SPACING		
	A	, = [z" -	8(3.34-)][1] =	28.72 IN2		
	An	= 28,77	- 8.5 (11/4 + 1/8			
	Ag	= 2.5	52			
	An.	t = 2.5 IN	- Y2 (11/4 + 1/4	$(8) = 1.81 \text{ in }^2$		
			+5: (2.5·N2) = 14			
			0.6 (58) (17.03)			
	0.6	Fy Agy =	0.6 (36) (26.72) =	620 K		
	do	C	1			
	W En:	0.75 [92 + 145] =		+ 145 +)	
			552 ≤ 573k			
			5734 > 3	348 x .: /		

SmithG	roup Ge	neral Work She	et				
SmithGroup In 110 Mil	corporated Sub	ject					
Ann Arbor, Michig		e		Project No.			
f: 734	769 0999 Dra	wn By				201	
www.smith	group.com						
• Di		LOADS AT					J
	Vu =	Vub - Rub =	254 K	- 26.8 ×	= = 227	1.2 K	
	Hy = 1	Huc + Hum ;	R. Por	= 127 "	+ 40.3 =	+ 100 % :	267.3
	Ru= 1	J227.2 + 2	V1.32 =	351 K			
	REQUIRED	NUMBER	OF BOL	न ऽ			
	Nb	= 351 K 55.2 K/s	6.35	= 1	BOLTS		
×	ISE 7	1'/4" A.	490 N 1	BULTS	IN STD	HOLES	
	LOCATE &	BOLTO Z'/2	11 FRON	1 cou	MN F.	ALE	
+ SINGU	E PLATE	BEARIN	S G				
	ØRn= 7	(105 KIPS	11~)(1"):	735	K > 351	k	
· BEAM	WEB BE						
		6 11 THIC	KER THAN	J PLATE	- with	AME BEARI	NS V
· BEAM	WEB YIE						
	En= olo,	6Fy) dtw					
	= 1.0 (0.6) (5045)) (30) (1.	26)=)	,130 K	>> 351K	
· BLOCK		RUPTURE O					non
	Any = SI	1.5 + 7 (3,3	4)= 35	2h			
	Any = 35	5 IN2 - 6.5	(114+1)	8)(1)=	26102		
	A . = 2.	5 (1) = 7.	SINZ				
	Ant = 2	15 - 1/2 (1 1/4 + 1/8)(1)=	1.81 12		
		1. 81 (58 5)					
		V = 905 "					
		V= 756 K					
	$ \phi R_n = 0 $	75 (756 ×			15 (905	K + 105K))
		64	5× ≤ 75	, x			

11 OF

Smit	Group General Work Sheet	
l Ann Arbor,	p Incorporated Subject Miller Avenue ichigan 48104 Date Project No. 734 769 0999 Drawn By mithgroup.com	
	SHEAR YIELDING OF SINGLE PLATE	
	$L = 36" + \frac{1}{2}(30") + 3(3") + 1.5" = 61.5"$	
	OMP CONTROLS	
	Vu = Vue + Vub - Rub = 305 + 254 - 26.8 = 532	,2 ~
	SHEAR YIELDING 4 ORn = \$ (0.6Fg) Ag = 1.0(0.6)(36)(61.5)(1) 1328 =>> 532K.) = 1328 K
qr	SHEAR RUDTURE OF STINGLE PLATE	
	An= [61.5 - 13(114+1/0)](1") = 43.6 12	
	ØRn= 0.75 (0.6) (58) (43.6) = 1137 K >> 532	KIV
* 1"	PLATE ADEQUATE	
. DES	AN SINGLE - PLATE TO COLUMN CONNECTION	
	Vu = Vub - Rub = 227 K	
	Hu = Huc + Do POE = 127 + 100 = 227 K	
	Ru= 1/2272 + 2272 = 321 K	
100	NECTON LENGTH	
cor	G(3'') + 2(1'/2'') = 21''	
	Sr = 321 = 15:3 Klin	
	21 / Hux / 227	
L	AD ANGLE $Q = TAN^{-1} \left(\frac{H_u}{V_u} \right) = TAN^{-1} \left(\frac{227}{237} \right) = 45$	0
F	LLET WELD STRENGTH	
	Orn = 1.392 (1.0 + 0.551N) (45) = 1.80 K	IN
	Dmin = 15.3 = 4.23 -> USE 5/16"	
×	USE DOUBLE SIDED 5/16" FILLET WELDS	

	mur	Group	Gen	eral Work	Jileet							
Ann A	110 M rbor, Mic t: 7 f: 7	Incorporated Ailler Avenue higan 48104 34 769 9444 34 769 0999 ithgroup.com	Subje Date Draw				Pro	ject No.		7		
	CHE	ck s						At S	NGLE-	PLATE -	70 - C 01	L LELD
			+	mint	6.19	(5)	-					
)"		
	¥				SINGU	E PLA	TE	ONNECT	70~1	BETWEE	N BEAN	n GUSSEF
		AND	COL									
-	CHEC			VIELDIN				I WE	E IS			
SM			Rn =	Ø(SK	+ N)	Fynt	in					(Hm)
16.1-	116		-	1.0 (5 (1.79)	+ 24) (5	0)(0,	44 ")	= 72	4 K >>	127K
	CHE	ECK 1		WEB								
TBL										KIN	CH.	Ro Por)
9-4				[253+								j ale
	. 00	und	WER	SHEA	D							
		do	- 10	(0.6)(5011	15)(0.74	5) - 1	335 ×		2-27 K.	. ~
	1.15			URAL								
1.114×1	0	- why	TUEA	CRAC	STREN.	4119	or c	(1.1)		(75.6)	E AE	73 K-1N
		III K	y nip	= II R	1 5 4 27	Y	- 1.1	(1.1)	(30)			
	-			een co						1-6-0-72	din.	
				$s_{f} + t_{c_{p}}$								
		Ŧ		Cop = -	4573	K-IN -	790	K				
		10	-p = (1515"	-	215					
		11	NIL.	P. M.		1	- E-	<u>نہ</u> ا	10.0	K		
		Huc -	1,1	Ry Mos + B	F	45	15		139			
						15	+ 18"					
				= - 1	31 K							
	1	Jub = 1	hac :	0			-			×		Kriat
		Mys	= 1,	Ry Mp	- Huc	15 -	= 4	573 K	- N	139218	")= 2	071 KTN

Final Connection Design

Torsion Analysis

-

Center of Rigidity

RAM Frame v12.1 DataBase: New Column Layout With Braces

03/26/09 00:37:41

CRITERIA:

Rigid End Zones		Ignore Effects	
Member Force O	utput:	At Face of Joint	
P-Delta:	Yes	Scale Factor:	1.00
Ground Level:	Base		
Wall Mesh Criter	ria :		

Max. Allowed Distance between Nodes (ft): 8.00

		Centers	of Rigidity	Cente	rs of Mass
Level	Diaph. #	aph.# Xr		Xm	Ym
		ft	ft	ft	ft
Fifth-PH Floor	1	70.01	199.96	67.20	208.57
Fourth	1	70.00	199.96	62.57	205.28
Third	1	69.98	199.98	70.46	207.84
Second	1	69.94	200.01	69.63	198.58
First	1	69.71	200.08	76.74	147.73

		СОМ		COR		Eccentricity		5% (Used by RAM)		
_		x y		x y x y		у	х	у	х	у
	5PH	67.2	208.57	70.01	199.96	2.81	-8.61	7.2	13.76	
	4	62.57	205.28	70	199.96	7.43	-5.32	7.2	13.76	
	3	70.46	207.84	69.98	199.98	-0.48	-7.86	7.2	13.76	
	2	69.63	198.58	69.94	200.01	0.31	1.43	7.13	12.44	
	1	76.74	147.73	69.71	200.08	-7.03	52.35	9.97	16.13	

	Frame 1		Frame 2		Fran	ne 3	Fran	ne 4
N-S	х	x y		у	х	у	х	у
Coord	40	250	40	130	100	270	100	130
5PH	30.01	-50.04	30.01	69.96	-29.99	-70.04	-29.99	69.96
4	30	-50.04	30	69.96	-30	-70.04	-30	69.96
3	29.98	-50.02	29.98	69.98	-30.02	-70.02	-30.02	69.98
2	29.94	-49.99	29.94	70.01	-30.06	-69.99	-30.06	70.01
1	29.71	-49.92	29.71	70.08	-30.29	-69.92	-30.29	70.08

	Fran	ne 5	Frame 6		Frar	ne 7	
E-W	х	у	х	у	х	у	
Coord	55	280	55	220	55	100	
5PH	15.01	-80.04	15.01	-20.04	15.01	99.96	
4	15	-80.04	15	-20.04	15	99.96	
3	14.98	-80.02	14.98	-20.02	14.98	99.98	
2	14.94	-79.99	14.94	-19.99	14.94	100.01	
1	14.71	-79.92	14.71	-19.92	14.71	100.08	

1	FORSION									
	х	Vtot	М	1	2	3	4	5	6	7
	5ph	1073	7725.6	8.994615	8.994615	- 8.98862	- 8.98862	- 31.6663	- 7.92845	39.54729
	4	1882	13550.4	15.77095	15.77095	15.7709	15.7709	55.5415	13.9062	69.3644
	3	2482	17870.4	20.78501	20.78501	- 20.8127	- 20.8127	- 73.2304 -	- 18.3213 -	91.49677
	2	2895	20641.35	23.97586	23.97586	-24.072	-24.072	84.5536	21.1305	105.7157
	1	3160	31505.2	36.3131	36.3131	-37.022	-37.022	- 128.941	- 32.1384	161.4663

у	Vtot	М	1	2	3	4	5	6	7
5ph	1073	14764.48	17.18971	17.18971	- 17.1783	- 17.1783	- 60.5179	- 15.1521	75.57927
4	1882	25896.32	30.14003	30.14003	-30.14	-30.14	- 106.146	- 26.5763	132.5631
3	2482	34152.32	39.72247	39.72247	- 39.7755	- 39.7755	- 139.951	- 35.0141	174.8605
2	2895	36013.8	41.83165	41.83165	- 41.9993	- 41.9993	- 147.524	- 36.8672	184.4465
1	3160	50970.8	58.74927	58.74927	- 59.8962	- 59.8962	- 208.607	- 51.9952	261.2288

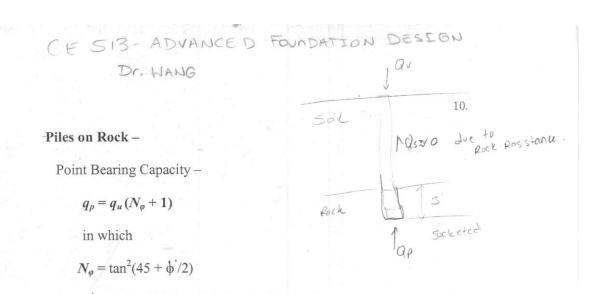
DIRECT SHEAR

JILAN					
х	Vtot	1	2	3	4
5ph	1073	268.25	268.25	268.25	268.25
4	1882	470.5	470.5	470.5	470.5
3	2482	620.5	620.5	620.5	620.5
2	2895	723.75	723.75	723.75	723.75
1	3160	790	790	790	790

у	Vtot	5	6	7	
5ph	1073	354.09	354.09	354.09	
4	1882	621.06	621.06	621.06	
3	2482	819.06	819.06	819.06	
2	2895	955.35	955.35	955.35	
1	3160	1042.8	1042.8	1042.8	

TOTAL	
SHEAR	

JILAN				
x	1	2	3	4
5ph	277.2446	277.2446	259.2614	259.2614
4	486.2709	486.2709	454.7291	454.7291
3	641.285	641.285	599.6873	599.6873
2	747.7259	747.7259	699.678	699.678
1	826.3131	826.3131	752.978	752.978


у	5	6	7	
5ph	293.5721	338.9379	429.6693	
4	514.914	594.4837	753.6231	
3	679.1086	784.0459	993.9205	
2	807.826	918.4828	1139.797	
1	834.1928	990.8048	1304.029	

Drift Analysis using SAP2000

E-W							
		Story			Total		
Story	Height	Drift	.025hsx	Acceptable	Drift	.025hsx	Acceptable
5ph	72.67	0.51	4.2	Yes	2.81	21.801	Yes
4	58.67	0.6	4.2	Yes	2.3	17.601	Yes
3	44.67	0.61	4.2	Yes	1.7	13.401	Yes
2	30.67	0.77	5.001	Yes	1.09	9.201	Yes
1	14	0.32	4.2	Yes	0.32	4.2	Yes

		Story			Total		
Story	Height	Drift	.025hsx	Acceptable	Drift	.025hsx	Acceptable
5ph	72.67	1.2	4.2	Yes	5.57	21.801	Yes
4	58.67	1.25	4.2	Yes	4.37	17.601	Yes
3	44.67	1.16	4.2	Yes	3.12	13.401	Yes
2	30.67	1.48	5.001	Yes	1.96	9.201	Yes
1	14	0.48	4.2	Yes	0.48	4.2	Yes

Foundation Design

 $\dot{\phi}$ = drained internal friction angle of rock

 $= q_u =$ unconfined compressive strength of rock

$$q_{v} = q_{u(lab)}/5$$

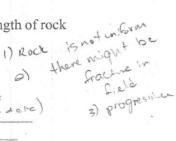


Table 11.8 Typical Unconfined Compressive Strength of Rocks (14 b test acte)

		q_u	
Type of rock	MN/m^2	lb/in ²	
Sandstone .	70-140	10,000-20,000	
Limestone	105-210	15,000-30,000	
Shale	3570	5000-10,000	
Granite	140-210	20,000-30,000	
Marble	60-70	8500-10,000	

Table 11.9 Typical Values of Angle of Friction ϕ' of Rocks

Type of rock	Angle of friction, ϕ' (deg)
Sandstone	27-45
Limestone	30-40
Shale	10-20
Granite	40-50
Marble	25-30

$$\frac{2}{F_3} = \frac{2\rho}{F_3} \qquad \frac{1}{F_3} = \frac{3.0 \text{ min}}{F_3}$$

= 90 Ap

SmithGroup		General Work Sho	nicer					
	roup Incorporated 110 Miller Avenue	Subject						
	r, Michigan 48104 t: 734 769 9444	Date		Project No.	FOUNDATION	DESIGN		
ww	f: 734 769 0999 w.smithgroup.com	Drawn By						
	n.sintingroup.com							
	HP 12×8	0.4						
		4.6 IN2						
	13- 00	TO IN						
	3 - PILE	E FOUNDATION	J					
	A. =	3 (24.6)=	73.8 .	22				
	USING 1	LIMESTONE	AS IDENT	FIED Pay	USGS AS			
	PREVAL	LENT IN .	THE AR	EA				
	ANGLE	OF FRICTION	$\phi = 3$	5 °				
			7					
	STRENG	TH 24 =	(25,000	201) (73.8	(N=)= 1845 '	<u></u>		
		- 12/1-	. \$/_ \ .	TANI	45+35/2)= 1.	0.2		
	Nø	= TAN (45	+ 123-	1000(45 + 5-/2)= 1,	72		
	0.	= 9. (Na+1) = 1845	× × 119	2+1) = 539	OKV		
	(r		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
		5390 ×	MOCH	GREATER	THAN TE ME			
		CRITICAL	FOUNDAT	ON FO	prices.			

Sample BRBF vs SCBF Cost Analysis

ASSE

Dasse Design Inc. Structural Engineers

	Item	BR	BF	SC	CBF	BRBF	Savings
. 51,	Columns	52 Tons	\$139,730	72 Tons	\$213,200	20 Tons	\$73,470
	Braces	N/A	\$242,345	34 Tons	\$168,249	N/A	-\$74,096
	Connections	N/A	\$128,546	N/A	\$290,584	N/A	\$162,03
2	Frame Beams	Typical Beams Adequate	\$0	13 Tons	\$27,500	13 Tons	\$27,500
6 STORY	Piles & Pile Caps	16 Piles 48 yd ³	\$75,200 \$25,440	40 Piles 83 yd ³	\$188,000 \$43,990	24 Piles 35 yd ³	\$112,800 \$18,550
	Spread Footings	145 yd ³	\$76,850	413 yd ³	\$218,890	268 yd ³	\$142,040
	Total Cost - Pile Foundation		\$611,261		\$931,523		\$320,26
	Total Cost - Spread Footings		\$587,471		\$918,423		\$330,952
	Columns	15 Tons	\$39,000	23 Tons	\$58,800	8 Tons	\$19,800
	Braces	N/A	\$120,430	17 Tons	\$60,740	N/A	-\$59,690
	Connections	N/A	\$62,230	N/A	\$102,230	N/A	\$40,000
ž	Frame Beams	Typical Beams Adequate	\$0	13 Tons	\$30,000	13 Tons	\$30,000
3 STORY	Piles &	8 Piles	\$37,600	16 Piles	\$75,200	8 Piles	\$37,600
30	Pile Caps	12 yd ³	\$6,360	23 yd ³	\$12,190	9 yd ³	\$5,830
	Spread Footings	50 yd3	\$26,500	110 yd ³	\$58,300	268 yd ³	\$31,800
	Total Cost - Pile Foundation		\$265,620		\$339,160		\$73,540
	Total Cost - Spread Footings		\$248,160		\$310,070		\$61,910

Table 3: LFRS Material Quantities and Costs

The cost savings generated by the BRBF systems is more significant at taller buildings, as the greater quantities of material utilized offsets the premium paid for the BRBF members. In addition, the period and base shear advantage of BRBF buildings to SCBF buildings increases with building height. Figure 4 demonstrates LFRS cost relative to building height for each of the model buildings.

82 of 82